Answer:

Explanation:
Unit conversions:
1890 km/h = 1890 km/h * 1000m/km * 1/3600 h/s = 525 m/s
5.2 km = 5200 m
Assume that the jets is traveling in perfect circular motion, we can calculate the centripetal acceleration of the motion:

where v = 525m/s is the velocity of the jet and r = 5200 is the radius of the arc

This is what I got:
Net force in the Y direction:
ΣFy = T1 - T2
F = ma
ma = T1 - T2
Isolate for T2
ma - T1 = -T2
Multiply by -1
T1 - ma = T2
100 - (3)(2) = T2
100 - 6 = T2
T2 = 94 N
The answer is; pressure
The sound is a longitudinal wave meaning the particles vibrate parallel to the direction of the wave. Sound waves, therefore, produce compression (akin to the crest in a transverse wave) and rarefaction regions (akin to a trough in a transverse wave) as its energy is propagated in the medium.
Answer:
a. A = 0.735 m
b. T = 0.73 s
c. ΔE = 120 J decrease
d. The missing energy has turned into interned energy in the completely inelastic collision
Explanation:
a.
4 kg * 10 m /s + 6 kg * 0 m/s = 10 kg* vmax
vmax = 4.0 m/s
¹/₂ * m * v²max = ¹/₂ * k * A²
m * v² = k * A² ⇒ 10 kg * 4 m/s = 100 N/m * A²
A = √1.6 m ² = 1.26 m
At = 2.0 m - 1.26 m = 0.735 m
b.
T = 2π * √m / k ⇒ T = 2π * √4.0 kg / 100 N/m = 1.26 s
T = 2π *√ 10 / 100 *s² = 1.99 s
T = 1.99 s -1.26 s = 0.73 s
c.
E = ¹/₂ * m * v²max =
E₁ = ¹/₂ * 4.0 kg * 10² m/s = 200 J
E₂ = ¹/₂ * 10 * 4² = 80 J
200 J - 80 J = 120 J decrease
d.
The missing energy has turned into interned energy in the completely inelastic collision
Answer:
a. one line down one line to the right one live to the northwest from the object
b. t1=190 t2=310
Explanation: