
Where v is the volume(in L) and t is the temperature(in °K)

Answer:
The material which is likely to slow the flow of electric charges the most is PVC plastic ‾ \text{\underline{PVC plastic}} PVC plastic.
Explanation:
brainlist please
Answer:
the value of equilibrium constant for the reaction is 8.5 * 10⁷
Explanation:
Ti(s) + 2 Cl₂(g) ⇄ TiCl₄(l)
equilibrium constant Kc = ![\frac{1}{[Cl_2]^2}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5BCl_2%5D%5E2%7D)
Given that,
We are given:
Equilibrium amount of titanium = 2.93 g
Equilibrium amount of titanium tetrachloride = 2.02 g
Equilibrium amount of chlorine gas = 1.67 g
We calculate the No of mole = mass / molar mass
mass of chlorine gas = 1.67 g
Molar mass of chlorine gas = 71 g/mol
mole of chlorine = 1.67 / 71
= 7.0L
Concentration of chlorine is = no of mole / volume
= 0.024 / 7
= 3.43 * 10⁻³M
equilibrium constant Kc = ![\frac{1}{[Cl_2]^2}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5BCl_2%5D%5E2%7D)
= ![\frac{1}{[3.43 * 10^-^3]^2}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5B3.43%20%2A%2010%5E-%5E3%5D%5E2%7D)
= 8.5 * 10⁷
Answer:
168°C is the melting point of your impure sample.
Explanation:
Melting point of pure camphor= T =179°C
Melting point of sample =
= ?
Depression in freezing point = 
Depression in freezing point is also given by formula:

= The freezing point depression constant
m = molality of the sample = 0.275 mol/kg
i = van't Hoff factor
We have:
= 40°C kg/mol
i = 1 ( non electrolyte)




168°C is the melting point of your impure sample.