Answer:
The dissociation constant of phenol from given information is
.
Explanation:
The measured pH of the solution = 5.153

Initially c
At eq'm c-x x x
The expression of dissociation constant is given as:
![K_a=\frac{[C_6H_5O^-][H^+]}{[C_6H_5OOH]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BC_6H_5O%5E-%5D%5BH%5E%2B%5D%7D%7B%5BC_6H_5OOH%5D%7D)
Concentration of phenoxide ions and hydrogen ions are equal to x.
![pH=-\log[x]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5Bx%5D)
![5.153=-\log[x]](https://tex.z-dn.net/?f=5.153%3D-%5Clog%5Bx%5D)



The dissociation constant of phenol from given information is
.
valance electrons that reside in the outermost shell of an atom in the highest energy level. They are important to atoms because the fewer valence electrons that the atom holds, it becomes less stable.
I take honors chemistry I hope this helps.
The balanced equation for the acid base reaction is as follows
NaOH + HCl ---> NaCl + H₂O
stoichiometry of NaOH to HCl is 1:1
the number of NaOH moles reacted - 0.200 mol/L x 0.0250 L = 0.005 mol
according to molar ratio
number of NaOH moles reacted = number of HCl moles reacted
therefore number of HCl moles - 0.005 mol
volume of 30.0 mL contains 0.005 mol
therefore 1000 mL contains - 0.005 mol / 0.030 L = 0.167 M
concentration of HCl is 0.167 M
<span>a. Use PV = nRT and solve for n = number of mols O2.
mols NO = grams/molar mass = ?
Using the coefficients in the balanced equation, convert mols O2 to mols NO2. Do the same for mols NO to mols NO2. It is likely that the two values will not be the same which means one is wrong; the correct value in LR (limiting reagent) problems is ALWAYS the smaller value and the reagent producing that value is the LR.
b.
Using the smaller value for mols NO2 from part a, substitute for n in PV = nRT, use the conditions listed in part b, and solve for V in liters. This will give you the theoretical yield (YY)in liters. The actual yield at these same conditions (AY) is 84.8 L.
</span>and % will be 60%.
Burette is a very accurate measuring instrument when adding solutions and has a measurement error of 0.05 mL.
Small volumes of solutions can be transferred from the burette at a controllable rate.
In this instance NaOH is in the burette.
Initial reading of NaOH is 0.20 mL
end point is the point at which the chemical reaction reaches completion. In acid base reactions, end point is when all the H⁺ ions have reacted with OH⁻ ions.
final reading of NaOH is 24.10 mL
to find the volume of NaOH dispensed we have to find the difference between final reading and initial reading
volume of NaOH added = 24.10 mL - 0.20 mL = 23.90 mL
volume of NaOH dispensed is 23.90 mL