Given
The y-component of vector K is

The magnitude of vector K is , K=8 cm
To find
The angle

Explanation
Resolving K along its y-component we have,

Conclusion
The angle made with the x-axis is
Answer:
the loss of energy due to the Joule effect is the cause of the non-ohmic characteristic of the bulb
Explanation:
A resistance is formed of some type of metal, in a light bulb it is Tungsten, which for low current is a resistance that complies with the ohm law.
When the value of the current is increased the shock of the electors creates a Joule effect, which heats the metal, these shocks are due to atomic imperfections of the structure, this heating creates a loss of energy of the system that causes the characteristic to be lost linear between the voltage and the current, since the total energy balance must be preserved.
An approximate measure of the energy that is emitted is given by Stefan's law.
In short, the loss of energy due to the Joule effect is the cause of the non-ohmic characteristic of the bulb
Answer:
B = 1.353 x 10⁻³ T
Explanation:
The Magnetic field within a toroid is given by
B = μ₀ NI/2πr, where N is the number of turns of the wire, μ₀ is the permeability of free space, I is the current in each turn and r is the distance at which the magnetic field is to be determined from the center of the toroid.
To find r we need to add the inner radius and outer radius and divide the value by 2. Hence,
r = (a + b)/2, where a is the inner radius and b is the outer radius which can be found by adding the length of a square section to the inner radius.
b = 25.1 + 3 = 28.1 cm
a = 25.1 cm
r = (25.1 + 28.1)/2 = 26.6 cm = 0.266m
B = 4π x 10⁻⁷ x 600 x 3/2π x 0.266
B = 1.353 x 10⁻³ T
The strength of the magnetic field at the center of the square cross section is 1.3 x 10⁻³ T
Answer:
Period of brightness variation and luminosity.
Explanation:
The Cepheid variables are used as distance indicators. This requires estimation of periods and (usually) intensity-mean magnitudes in order to establish a period—apparent luminosity relation. It is particularly important for the techniques employed to be as accurate and efficient as possible.