The second ball traveled a greater distance when compared to the first ball because the second ball spent more time in motion.
The given parameters;
- time of fall of the first ball, t = 1 s
- time of fall of the second ball, t = 3 s
The distance traveled by each ball is calculated using the second equation of motion as shown below.
The distance traveled by the first ball is calculated as follows;

The distance traveled by the second ball is calculated as follows;

Thus, the second ball traveled a greater distance because it spent more time in motion.
Learn more here:brainly.com/question/5868480
Answer:
Gas
Explanation:
The gas state of matter has the most energy because of how freely the molecules move
Answer:
Speed at which the ball passes the window’s top = 10.89 m/s
Explanation:
Height of window = 3.3 m
Time took to cover window = 0.27 s
Initial velocity, u = 0m/s
We have equation of motion s = ut + 0.5at²
For the top of window (position A)

For the bottom of window (position B)


We also have

Solving

So after 1.11 seconds ball reaches at top of window,
We have equation of motion v = u + at

Speed at which the ball passes the window’s top = 10.89 m/s
Wave speed = (wavelength) x (frequency)
= (4 m) x (2 /sec)
= 8 m/sec
Answer:
Mechanical advantage = 4
Explanation:
Given the following data;
Distance of effort, de = 8m
Distance of ramp, dr = 2m
To find the mechanical advantage;
Mechanical advantage = de/dr
Substituting into the equation, we have;
Mechanical advantage = 8/2
Mechanical advantage = 4