Answer:
The distance is
Explanation:
From the question we are told that
The initial speed of the electron is 
The mass of electron is 
Let
be the distance between the electron and the proton when the speed of the electron instantaneously equal to twice the initial value
Let
be the initial kinetic energy of the electron \
Let
be the kinetic energy of the electron at the distance
from the proton
Considering that energy is conserved,
The energy at the initial position of the electron = The energy at the final position of the electron
i.e

are the potential energy at the initial position of the electron and at distance d of the electron to the proton
Here 
So the equation becomes

Here
are the charge on the electron and the proton and their are the same since a charge on an electron is equal to charge on a proton
is electrostatic constant with value 
i.e
is the velocity at distance d from the proton = 2
So the equation becomes

![\frac{1}{2} mv_i^2 = 4 [\frac{1}{2}mv_i^2 ]- \frac{k(q)^2}{d}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%20mv_i%5E2%20%20%3D%204%20%5B%5Cfrac%7B1%7D%7B2%7Dmv_i%5E2%20%5D-%20%5Cfrac%7Bk%28q%29%5E2%7D%7Bd%7D)
![3[\frac{1}{2}mv_i^2 ] = \frac{k(q)^2}{d}](https://tex.z-dn.net/?f=3%5B%5Cfrac%7B1%7D%7B2%7Dmv_i%5E2%20%5D%20%3D%20%5Cfrac%7Bk%28q%29%5E2%7D%7Bd%7D)
Making d the subject of the formula



Let <em>F</em> be the magnitude of the force applied to the cart, <em>m</em> the mass of the cart, and <em>a</em> the acceleration it undergoes. After time <em>t</em>, the cart accelerates from rest <em>v</em>₀ = 0 to a final velocity <em>v</em>. By Newton's second law, the first push applies an acceleration of
<em>F</em> = <em>m a</em> → <em>a</em> = <em>F </em>/ <em>m</em>
so that the cart's final speed is
<em>v</em> = <em>v</em>₀ + <em>a</em> <em>t</em>
<em>v</em> = (<em>F</em> / <em>m</em>) <em>t</em>
<em />
If we force is halved, so is the accleration:
<em>a</em> = <em>F</em> / <em>m</em> → <em>a</em>/2 = <em>F</em> / (2<em>m</em>)
So, in order to get the cart up to the same speed <em>v</em> as before, you need to double the time interval <em>t</em> to 2<em>t</em>, since that would give
(<em>F</em> / (2<em>m</em>)) (2<em>t</em>) = (<em>F</em> / <em>m</em>) <em>t</em> = <em>v</em>
Explanation:
The somatic nervous system coordinates the voluntary control of movement in the body system.
The nervous system is made up of the central nervous system and peripheral nervous system.
The peripheral nervous system is made up of the nerves that branches into the body from the spinal cord.
- It consist of the somatic nervous system and the autonomous nervous system.
- The somatic nervous system controls the voluntary actions of movement in the body.
- It coordinates the reflex arc.
Learn more:
Nervous system brainly.com/question/4662759
#learnwithBrainly
When an object gets heated by a temperature ΔT energy needed, E = mcΔT
Here energy is given E = 2050 J
Mass of object = 150 g
Change in temperature ΔT = 15
= 15 K
a) Heat capacity of an object equal to the ratio of the heat added to (or removed from) an object to the resulting temperature change.
So heat capacity = E/ΔT = 2050/15 = 136.67 J/K
b) We have E = mcΔT
c = 
So object's specific heat = 911.11 J/kgK
Answer:
Speed at bottom of the hill (v) = 11.74 m/s
Explanation:
Given:
Combined mass = 48.8 kg
Height h = 7.05 m
Find:
Speed at bottom of the hill (v)
Computation:
v² = 2gh
v = √2 x 9.8 x 7.05
v = √138.18
v = 11.74 m/s
Speed at bottom of the hill (v) = 11.74 m/s