Answer:
(I). The resistance of the copper wire is 0.0742 Ω.
(II). The resistance of the carbon piece is 1.75 Ω.
Explanation:
Given that,
Length of copper wire = 1.70 m
Diameter = 0.700 mm
Length of carbon piece = 20.0 cm
Cross section area
(I). We need to calculate the area of copper wire
Using formula of area


We need to calculate the resistance
Using formula of resistance

Put the value into the formula


(II). We need to calculate the resistance
Using formula of resistance

Put the value into the formula


Hence, (I). The resistance of the copper wire is 0.0742 Ω.
(II). The resistance of the carbon piece is 1.75 Ω.
The average kinetic energy of a gas particle is directly proportional to thetemperature. An increase intemperature increases the speed in which the gas molecules move. Allgases at a given temperature have the same average kinetic energy. Lightergas molecules move faster than heavier molecules.
1.3 A
If a clock expends 2 W of power from a 1.5 V battery, what amount of current is supplying
the clock?
solution
as we know
p=vi
i=p/v
=2/1.5
=1.3A
Answer: the dorsal cavity
Explanation:
Dorsal body cavity is the body cavity in the human body which is located posteriorly and it comprises of two type of body cavities that are cranial and the spinal. The cranial cavity is formed inside the skull and it protects the vital organ brain inside the bony protection and the spinal cavity houses the spinal cord. Thoracic cavity and pelvic cavity are the ventral cavities that means they are present in the front of the body.
Kinetic of automobile
Mass m = 1,250 Kg; V = 11 m/s
Formula: K.E = 1/2 mV²
K.E = 1/2(1,250 Kg)(11 m/s)²
K.E = 75,625 J
Speed required for insect to have the same kinetic energy as automobile
Mass of insect = 0.72 g convert to Kg m = 7.2 x 10⁻⁴ Kg
K.E = 1/2 mV² Derive V =?
V = 2 K.E/m
V = √2(75,625 J)/7.2 x 10⁻4 Kg
V = √2.1 x 10⁸ m²/s²
V = 14,491.34 m/s (velocity of insect)