Use the law of conservation of momentum. Since the momentum is a linear measure, we can treat each of the dimension separately:
i-direction:

j-direction:

Answer: Final velocity is: (10i + 15j) m/s
Change in the kinetic energy:

Answer: The system lost 500J worth of kinetic energy in the collision
Increased lamp voltage is achieved by turning the light intensity dial.
To enlarge the diameter of the hole and let more light through the slide, the iris diaphragm was modified.
Condenser: Position it higher and closer to the slide's bottom to better direct light to the centre of the slide.
<h3>
How do you adjust the light level on a microscope?</h3>
Utilize the brightness adjustment knob to change the brightness. Turn the brightness control knob while looking through the eyepieces to make sure there is no glare in the field of view.
Use a daylight balancing filter if your compound microscope has a certain sort of illumination. It typically rests directly on top of the luminator or in a filter holder above the light. This filter is blue.
The daylight balancing filter will correct the colour temperature and produce a higher-quality image if your microscope is lighted by tungsten or halogen (and a better colour image). This blue filter is not necessary if your microscope is an LED.
To learn more about light level on a microscope, visit:
brainly.com/question/14727797
#SPJ4
Humans hear frequencies from 20 Hz<span> (low) up to </span>20,000 Hz (high)
Gravity largely depends on the comparison of two objects; it's why you have the equation F= (GMm)/r^2. On Earth, you have different altitudes that, with the formula, will give different results for gravity because the radius is different everywhere. This difference on calculations, however, are seen to be miniscule. We know gravity as 9.81 m/s^2 but it might be different by thousandths or hundreds of thousandths of a decimal.
The answer is “Impulse acting on it” according to the impulse-momentum theorem.