Answer:
When the object is placed between centre of curvature and principal focus of a concave mirror the image formed is beyond C as shown in the figure and it is real, inverted and magnified.
Answer:
<em>The magnitude of vector d is 16 and the angle with the x-axis is 270°</em>
Explanation:
<u>Operations With Vectors</u>
Given two vectors in rectangular components:

The sum of the vectors is:

The difference between the vectors is:

The magnitude of
is:

The angle
makes with the horizontal positive direction is:

The question provides the vectors:



Calculate:

The magnitude of
is:

The angle is calculated by:

The division cannot be calculated because the denominator is zero. We need to estimate the correct angle by looking at the components of the vector. Since the x-coordinate is zero and the y-coordinate is negative, the vector points downwards (south), thus the angle must be -90° or 270° if the range goes from 0° to 360°.
The magnitude of vector d is 16 and the angle with the x-axis is 270°
Answer:
Explanation:
a )
Time to reach the speed of 20 m/s with an acceleration of 2 m/s² can be calculated as follows .
v = u + a t
20 = 0 + 2 t
t = 20 /2 = 10 s .
Total time = 10 s + 20 s + 5 s = 35 s .
b) Average velocity = Total distance travelled / total time
Distance travelled in first 10 s
S₁ = ut + 1/2 a t²
= 0 + .5 x 2 x 10²
= 100 m
Distance travelled in next 20 s
S₂= 20s x 20 m/s = 400 m
Distance travelled in last 5 s .
deceleration in last 5 s
v = u + at
0 = 20 m/s + a x 5
a = - 4 m/s²
v² = u² - 2 a s
0 = (20 m/s)² - 2 x 4 m/s² x s
s = 50 m
S₃ = 50 m
Total distance = S₁ + S₂ + S₃
= 100 m + 400 m + 50 m
= 550 m .
Average velocity = 550 m / 35 s
= 15.71 m /s .
The mathematical and proportional relationship between mL and
said us that
is equivalent to 1mL.
If the density is considered as the amount of mass per unit volume we will have to

here,
m = mass
V = Volume
Replacing we have that


As
we have that the density in g/mL is,
