<u>Answer:</u>
The correct answer option is D. The distance between the planet and the Sun changes as the planet orbits the sun.
<u>Explanation:</u>
Kepler’s laws of planetary motion, derived by the German astronomer Johannes Kepler, are the laws of physics that describe the motions of the planets in the solar system.
According to the Kepler's first law of planetary motion: the path on which the planets orbit around the sun is elliptical in shape, with the center of the sun at one focus.
Therefore, the distance between the Sun and the planets vary as the planet orbit around the sun.
<span>(9 kg)(5 m/s^2) = M(3 m/s^2)
</span><span>that the acceleration of the object varies inversely with its mass.</span>
To solve this problem we will apply the laws of Mersenne. Mersenne's laws are laws describing the frequency of oscillation of a stretched string or monochord, useful in musical tuning and musical instrument construction. This law tells us that the velocity in a string is directly proportional to the root of the applied tension, and inversely proportional to the root of the linear density, that is,

Here,
v = Velocity
= Linear density (Mass per unit length)
T = Tension
Rearranging to find the Period we have that


As we know that speed is equivalent to displacement in a unit of time, we will have to



Therefore the tension is 5.54N