Answer:
4.767 grams of KCl are produced from 2.50 g of K and excess Cl2
Explanation:
The balanced equation is
2 K+ Cl2 --->2 KCI
Here the limiting agent is K. Hence, the amount of KCl will be calculated as per the mass of 2.50 gram of K
Mass of one atom/mole of potassium is 39.098 grams
Number of moles is 2.5 grams = 
So, 2 moles of K produces 2 moles of KCL
0.064 moles of K will produces 0.064 moles of KCl
Mass of one molecule of KCl is 74.5513 g/mol
Mass of 0.064 moles of KCl is 4.767 grams
Answer:
2,780,000mg
Explanation:
Using the Metric Staircase photo provided, you can calculate how many mg there are in 2.78 kg by simply moving the decimal point six places to the right, since the "Kilo" step takes six places to move to the "Milli" step.
2.78 kg
---------------
2 7 8 0 0 0 0 .
we can see that the decimal point is moved to the right six places.
Answer:
2,780,000mg
Reconstitution is the act of adding fluid such as distilled water to a powdered or crystalline form.
Additionally, medications are frequently provided in dry form, such as powders or crystals, which must be reconstituted with liquid before being injected parenterally. To create a specified liquid concentration, a dry ingredient is reconstituted by adding a liquid diluent. To ensure that the drug is reconstituted in the exact concentration, it is crucial to carefully follow the reconstitution instructions. The quantity of fluid used to dilute the drug must also be taken into account when determining the dosage of reconstituted medication to provide to the patient.
Learn more about Reconstitution here-
brainly.com/question/791594
#SPJ4
Answer:
1.99grams
Explanation:
- First, we need to calculate the molar mass of the compound: Ca(HCO3)2
Ca = 40g/mol, H = 1g/mol, C = 12g/mol, O = 16g/mol
Hence, Ca(HCO3)2
= 40 + {1 + 12 + 16(3)}2
= 40 + {13 + 48}2
= 40 + {61}2
= 40 + 122
= 162g/mol
Molar mass of Ca(HCO3)2 = 162g/mol
- Next, we calculate the mass of oxygen in one mole of the compound, Ca(HCO3)2.
Oxygen = {16(3)}2
= 48 × 2
= 96g of Oxygen
- Next, we calculate the percentage composition of oxygen by mass by dividing the mass of oxygen in the compound by the molar mass of the compound i.e.
% composition of O = 96/162 × 100
= 0.5926 × 100
= 59.26%.
- The number of moles of the compound, Ca(HCO3)2, must be converted to mass by using the formula; mole = mass/molar mass
0.0207 = mass/162
Mass = 162 × 0.0207
Mass = 3.353grams
However, in every gram of Ca(HCO3)2, there is 0.5926 g of oxygen
Hence, in 3.353grams of Ca(HCO3)2, there will be;
0.5926 × 3.353
= 1.986
= 1.99grams.
Therefore, there is 1.99grams of Oxygen in 0.0207 moles (3.353g) of Ca(HCO3)2.