Answer:
1255.4L
Explanation:
Given parameters:
P₁ = 928kpa
T₁ = 129°C
V₁ = 569L
P₂ = 319kpa
T₂ = 32°C
Unknown:
V₂ = ?
Solution:
The combined gas law application to this problem can help us solve it. It is mathematically expressed as;

P, V and T are pressure, volume and temperature
where 1 and 2 are initial and final states.
Now,
take the units to the appropriate ones;
kpa to atm, °C to K
P₂ = 319kpa in atm gives 3.15atm
P₁ = 928kpa gives 9.16atm
T₂ = 32°C gives 273 + 32 = 305K
T₁ = 129°C gives 129 + 273 = 402K
Input the values in the equation and solve for V₂;

V₂ = 1255.4L
Answer:The first task of a nuclear weapon design is to rapidly assemble a supercritical mass of fissile uranium or plutonium. A supercritical mass is one in which the percentage of fission-produced neutrons captured by another fissile nucleus is large enough that each fission event, on average, causes more than one additional fission event. Once the critical mass is assembled, at maximum density, a burst of neutrons is supplied to start as many chain reactions as possible. Early weapons used a modulated neutron generator codenamed "Urchin" inside the pit containing polonium-210 and beryllium separated by a thin barrier. Implosion of the pit crushed the neutron generator, mixing the two metals, thereby allowing alpha particles from the polonium to interact with beryllium to produce free neutrons. In modern weapons, the neutron generator is a high-voltage vacuum tube containing a particle accelerator which bombards a deuterium/tritium-metal hydride target with deuterium and tritium ions. The resulting small-scale fusion produces neutrons at a protected location outside the physics package, from which they penetrate the pit. This method allows better control of the timing of chain reaction initiation.
Explanation:
True I think is the answer
Answer:In a physical change, atoms are not rearranged and the matter's physical and chemical properties are unchanged. Chemical changes, on the other hand, rearrange the atoms of matter in new combinations, resulting in matter with new physical and chemical properties.
Explanation:
easy