Answer:
15
Explanation:
mass, M = 5Kg
horizontal force, F_h = 40N
acceleration, a =5 m/s^2
frictional force, F_f =?
net force = ma
net force = F_h - F_f = 40N - F_f
40 - F_f = 5 x 5
- F_f = 25 - 40
multiply both side by -1
F_f = 40 - 25 = 15
the frictional force is 15N
Answer:
Explanation:
The moment of inertia is the integral of the product of the squared distance by the mass differential. Is the mass equivalent in the rotational motion
a) True. When the moment of inertia is increased, more force is needed to reach acceleration, so it is more difficult to change the angular velocity that depends proportionally on the acceleration
b) True. The moment of inertia is part of the kinetic energy, which is composed of a linear and an angular part. Therefore, when applying the energy conservation theorem, the potential energy is transformed into kinetic energy, the rotational part increases with the moment of inertia, so there is less energy left for the linear part and consequently it falls slower
c) True. The moment of inertial proportional to the angular acceleration, when the acceleration decreases as well. Therefore, a smaller force can achieve the value of acceleration and the change in angular velocity. Consequently, less force is needed is easier
Since like poles repel, the two horseshoe magnets have like poles facing each other, hence they repel each other and therefore they will not come in contact
Potential Energy (energy that is stored as a result of position or shape)