While ice melts, it remains at 0 °C, and the liquid water that is formed with the latent heat of fusion is also at 0 °C. The heat of fusion for water at 0 °C is approximately 334 joules per gram, and the heat of vaporization at 100 °C is about 2,230 joules per gram. So it will be C
Answer:
<h2>a) Time elapsed before the bullet hits the ground is 0.553 seconds.</h2><h2>b)
The bullet travels horizontally 110.6 m</h2>
Explanation:
a) Consider the vertical motion of bullet
We have equation of motion s = ut + 0.5 at²
Initial velocity, u = 0 m/s
Acceleration, a = 9.81 m/s²
Displacement, s = 1.5 m
Substituting
s = ut + 0.5 at²
1.5 = 0 x t + 0.5 x 9.81 xt²
t = 0.553 s
Time elapsed before the bullet hits the ground is 0.553 seconds.
b) Consider the horizontal motion of bullet
We have equation of motion s = ut + 0.5 at²
Initial velocity, u = 200 m/s
Acceleration, a = 0 m/s²
Time, t = 0.553 s
Substituting
s = ut + 0.5 at²
s = 200 x 0.553 + 0.5 x 0 x 0.553²
s = 110.6 m
The bullet travels horizontally 110.6 m
Answer:
The answer to your question should be D.
Explanation:
reactants are on the laft side of arrow and products are on right side of arrow
Answer:
15 m/s^2 The first thing to calculate is the difference between the final and initial velocities. So 180 m/s - 120 m/s = 60 m/s So the plane changed velocity by a total of 60 m/s. Now divide that change in velocity by the amount of time taken to cause that change in velocity, giving 60 m/s / 4.0 s = 15.0 m/s^2 Since you only have 2 significaant figures, round the result to 2 significant figures giving 15 m/s^2
Explanation:
She could text/email,report it to them personally,post up flyers,tell one person to spread it around