Complete question:
A spirit burner used 1.00 g methanol to raise the temperature of 100.0 g water in a metal can from 28.00C to 58.0C. Calculate the heat of combustion of methanol in kJ/mol.
Answer:
the heat of combustion of the methanol is 402.31 kJ/mol
Explanation:
Given;
mass of water,
= 100 g
initial temperature of water, t₁ = 28 ⁰C
final temperature of water, t₂ = 58 ⁰C
specific heat capacity of water = 4.184 J/g⁰C
reacting mass of the methanol, m = 1.00 g
molecular mass of methanol = 32.04 g/mol
number of moles = 1 / 32.04
= 0.0312 mol
Apply the principle of conservation of energy;

Therefore, the heat of combustion of the methanol is 402.31 kJ/mol
<span>Fred and Ethel Mertz
</span>
Answer:
2.5 grams
Explanation:
you can see it on the graph
Answer:
One of the most important uses for fingerprints is to help investigators link one crime scene to another involving the same person. Fingerprint identification also helps investigators to track a criminal's record, their previous arrests and convictions, to aid in sentencing, probation, parole and pardoning decisions.
Explanation: