Find the number of moles
C = n / V
C(Concentration) = 0.30 moles / L
V ( Volume) = 2 L
n = ??
n = C * V
n = 0.30 mol / L * 2 L
n = 0.60 mol
Find the molar mass
2Na = 23 * 2 = 46 grams
1S = 32 * 1 = 32 grams
O4 = 16 * 4 = 64 grams
Total = 142 grams / mol
Find the mass
n = given mass / molar mass
n = 0.06 mol
molar Mass = 142 grams / mol
given mass = ???
given mass = molar mass * mols
given mass = 142 * 0.6
given mass = 85.2 grams.
85.2 are in a 2 L solution that has a concentration of 0.6 mol/L
They both build up to form electricity
Answer:
a) First-order.
b) 0.013 min⁻¹
c) 53.3 min.
d) 0.0142M
Explanation:
Hello,
In this case, on the attached document, we can notice the corresponding plot for each possible order of reaction. Thus, we should remember that in zeroth-order we plot the concentration of the reactant (SO2Cl2 ) versus the time, in first-order the natural logarithm of the concentration of the reactant (SO2Cl2 ) versus the time and in second-order reactions the inverse of the concentration of the reactant (SO2Cl2 ) versus the time.
a) In such a way, we realize the best fit is exhibited by the first-order model which shows a straight line (R=1) which has a slope of -0.0013 and an intercept of -2.3025 (natural logarithm of 0.1 which corresponds to the initial concentration). Therefore, the reaction has a first-order kinetics.
b) Since the slope is -0.0013 (take two random values), the rate constant is 0.013 min⁻¹:

c) Half life for first-order kinetics is computed by:

d) Here, we compute the concentration via the integrated rate law once 1500 minutes have passed:

Best regards.
Answer:
The forces that hold atoms together are the electrical force and the strong force, which is stronger than the electrical force.
ღ ღ ღ ღ ღ ღ Hope This Helpsღ ღ ღ ღ ღ ღ