Answer:
Explanation:
In the following reaction we have shown an example of aromatic substitution reaction .
C₆H₆ + RCl = C₆H₅R + HCl
This reaction takes place in the presence of catalyst like AlCl₃ which is a lewis acid .
First of all formation of carbocation is made as follows .
RCl + AlCl₃ = R⁺ + AlCl₄⁻
This R⁺ is carbocation which is also called electrophile . It attacks the ring to get attached with it .
C₆H₆ + R⁺ = C₆H₅R⁺H.
The complex formed is unstable , though it is stabilized by resonance effect . In the last step H⁺ is kicked out of the ring . The driving force that does it is the steric hindrance due to presence of two adjacent group of H and R⁺ at the same place . Second driving force is attack by the base AlCl₄⁻ that had been formed earlier . It acts as base and it extracts proton ( H⁺ ) from the ring .
C₆H₅R⁺H + AlCl₄⁻ = C₆H₆ + AlCl₃ + HCl .
The formation of a stable product C₆H₆ also drives the reaction to form this product .
The balanced half reactions are
4 Fe2+ ====> 4 Fe3+ + 4 e-
<span>MnO42- + 8 H+ + 4 e- ===> Mn2+ + 4 H2O
The net ionic equation is
4 Fe2+ + </span>MnO42- + 8 H+ ===> 4 Fe3+ + Mn2+ + 4 H2O<span />
C. cells is your answer.
Cells are the most basic building blocks, in which a group of cells create a <em>tissue</em>, and a group of tissue creates an <em>organ</em>.
~
Answer:
<u><em>=355.5K</em></u>
Explanation:
Specific heat, Q = mcΔT
where
- Q= 4250J
- ΔT= change in temp = final temp - initial temp
- c = specific heat capacity = 1.7
- m = mass of substance in grams
[1 mole of Ne = 20g; 2 moles of Ne = 2 × 20 = 40g]
4250 = 40 × 1.7 × (final - 293K)
final - 293k = 4250 / ( 40 × 1.7)
Final temp = 62.5 + 293
<em>=355.5K</em>
I hope this steps are simple to follow and understand.
Answer: 3 oxygen atoms!
Explanation: Let me know if I'm wrong, if not I'm happy to help!