30 km (20 mi) to 50 km (30 mi)
The image position is 13.9 cm from the mirror
Explanation:
To solve this problem, we can use the mirror equation:

where
f is the focal length
p is the distance of the object from the mirror
q is the distance of the image from the mirror
In this problem, we have:
f = 3.4 cm is the focal length of the mirror (positive for a concave mirror)
p = 4.5 cm is the position of the object (the tree)
Solving the equation for q, we find the position of the image:

Learn more about mirrors:
brainly.com/question/8737441
#LearnwithBrainly
Answer:
B. Dust storm
Explanation:
A meteorologist would predict dust storm most likely. Before dust storm the air condition and air pressure reduces in the particular area which indicate towards a dust storm. As pressure of a region reduces the air of the neighboring area try to maintain that pressure and rush towards low pressure area and causes dust storm.
7kinetic energy is decreasing in B
Answer:
Meter (m)
Explanation:
The wavelenght of a light wave is a measure of the distance between two successive crests (or two successive troughs) of a light wave.
Since the SI units for the distance is the meter (m), then the SI unit for the wavelength is also the meter (m).
Wavelength is related to the frequency of the light wave by:

where
c is the speed of light
f is the frequency of the light