Answer:
The power will be "250 watt". A further explanation is given below.
Explanation:
The given values are:
Force,
F = 50 N
Displacement,
d = 20 m
Time,
t = 2.0 seconds
Whenever the block is pulled, the angle will be "0" i.e., Cos0° = 1
Now,
The work will be:
= 
On substituting the given values, we get
= 
= 
= 
Now,
The Power will be:
= 
= 
= 
Answer:
32 meters
Explanation:
Given:
x₀ = 0 m
y₀ = 1 m
y = 1 m
v₀ₓ = 18 cos 52° m/s
v₀ᵧ = 18 sin 52° m/s
aₓ = 0 m/s²
aᵧ = -9.8 m/s²
Find: x
First, find the time it takes for the ball to be caught.
y = y₀ + v₀ᵧ t + ½ aᵧt²
1 = 1 + 18 sin 52° t + ½ (-9.8) t²
0 = 14.2 t − 4.9 t²
0 = t (14.2 − 4.9 t)
t = 0 or 2.89
It takes 2.89 seconds to be caught. The horizontal distance traveled in that time is:
x = x₀ + v₀ₓ t + ½ aₓt²
x = 0 + (18 cos 52°) (2.89) + ½ (0) (2.89)²
x = 32.1
Rounded to two significant figures, the ball travels 32 meters.
Answer:
Let M1 = 8 kg and M2 = 34 kg
F = M a = (M1 + M2) a
F = M2 g the net force accelerating the system
M2 g = (M1 + M2) a
a = M2 / (M1 + M2) g = 34 / (42) g = .81 g = 7.9 m/s^2
The focal length of the lens is the distance between the lens and the image sensor when the subject is in focus, usually stated in millimeters (e.g., 28 mm, 50 mm, or 100 mm). In the case of zoom lenses, both the minimum and maximum focal lengths are stated, for example 18–55 mm.