<span>Which
of the following best describes the electron cloud model?
THE ELECTRON CLOUD MODEL WAS DEVELOPED BY SCHRODINGER. IT STATES THE THE ELECTRONS ARE NOT PARTICLES MOVING AROUND THE NUCLEUS IN FIXED ORBITY BUT THEIR LOCATIONS CAN ONLY BE STATED BY A PROBABILITY DENSITY IN FORM OF CLOUD AROUND THE NUCLEUS.
THEN THE MAIN POINT OF THE CLOUD MODEL IS THAT THE ELECTRONS ARE NOT IN FIXED ORBITS AROUND THE NUCLEUS BUT THEIR LOCATION IS STATED BY A PROBABILITY FUNCTION THAT IS LIKE A CLOUD REGION.
A. It shows
that electrons usually carry a negative charge.
FALSE: ELECTRONS ALWAYS CARRY NEGATIVE CHARGE
B. It shows that
electrons remain in high-energy subshells.
FALSE: ELECTRONS OCCUPY THE LOWEST-ENERGY SUBSHELLS AVAILABLE UNLESS THEY ARE EXCITED (ABSORB ENERGY)
C. It shows that electrons
move quickly in circular orbits.
FALSE: ELECTRONS DO NOT MOVE IN CIRCULAR ORBITS.
D. It shows that the electrons within
an atom do not have sharp boundaries.
TRUE. THE IDEA OF A CLOUD IS A DIFFUSSE REGION WHERE IS A 90% OF PROBABILITIES TO FIND THE ELECTRON, AND THEY DO NOT HAVE SHARP BOUNDARIES.
</span>
Answer:
21g
Explanation:
no.ofmol fe2o3=39.5/(56×2+16×3)=0.25mol
from equation 1mole fe2o3 react with 3mole co
so,0.25mol fe2o3 react with 0.75mol co
mass of co=0.75×(12+16)=21g
Actually for this question answer is Acid. but to know more accurately..... comment !
<u>Answer:</u> The temperature of the ideal gas is 
<u>Explanation:</u>
To calculate the temperature, we use the equation given by ideal gas equation:

where,
P = Pressure of the gas = 142,868 Pa = 142.868 kPa (Conversion factor: 1 kPa = 1000 Pa)
V = Volume of gas = 1.0000 L
n = number of moles of ideal gas = 0.0625 moles
R = Gas constant = 
T = temperature of the gas = ?
Putting values in above equation, we get:

Hence, the temperature of the ideal gas is 