<u>Answer:</u>
<em>The energy to turn the ice into water:</em>
- The energy that is required to change the state of ice into a liquid is obtained in the form of heat energy from the ambient temperature of the warm room.
- Once this heat energy is absorbed, the individual molecules of ice gain kinetic energy and start vibrating faster.
- Yet, the temperature of the ice remains constant until the ice reaches its melting point because this energy is first utilised to break all the bonds of the lattice structure of the ice.
- After all the bonds are broken and all of the ice has changed into water, if more heat is provided again, then the temperature of the water will increase.
Here we have to write a simple equation which describes the action of the enzyme catalase.
The equation is: The concentration of the complex [ES] = ![\frac{[E]0}{1+\frac{Km}{[S]} }](https://tex.z-dn.net/?f=%5Cfrac%7B%5BE%5D0%7D%7B1%2B%5Cfrac%7BKm%7D%7B%5BS%5D%7D%20%7D)
Let us consider an enzyme catalyses reaction E + S ⇄ ES → E + P
Where E, S, ES and P are enzyme, substrate, complex and product respectively.
The concentration of the complex [ES] =
, where
is the Michaelis constant.
[E]₀ and [S] is the initial concentration of enzyme and concentration of substrate respectively.
Answer:
Earthquake
Explanation:
Notice how it is starting to shift allowing the earthquake to form.
Answer:
4.78 mol O2
Explanation:
Grams --> moles
Grams/molar mass = moles
153 g O2 / 32 g/mol O2 = 4.78125 (significant figures so round it up; the grams has 3 significant figures, so round it up) 4.78 mol O2
Answer:
Therefore it will take 7.66 hours for 80% of the lead decay.
Explanation:
The differential equation for decay is


Integrating both sides
ln A= kt+c₁

[
]
The initial condition is A(0)= A₀,


.........(1)
Given that the
has half life of 3.3 hours.
For half life
putting this in equation (1)

[taking ln both sides,
]

⇒k= - 0.21
Now A₀= 1 gram, 80%=0.8
and A= (1-0.8)A₀ = (0.2×1) gram = 0.2 gram
Now putting the value of k,A and A₀in the equation (1)




⇒ t≈7.66
Therefore it will take 7.66 hours for 80% of the lead decay.