The acid dissociation constant is 1.3 × 10^-3.
<h3>What is acid-dissociation constant?</h3>
The acid-dissociation constant is a constant that shows the extent of dissociation of an acid in solution. We have to set up the reaction equation as shown below;
Let the acid be HA;
HA + H2O ⇄ H3O^+ + A^-
since the pH of the solution is 2.57 then;
[H3O^+] = Antilog(-pH) = Antilog(-2.57) = 2.7 × 10^-3
We can see that; [H3O^+] = [A^-] so;
Ka = (2.7 × 10^-3)^2/(5.5 × 10^–3)
Ka = 1.3 × 10^-3
Learn more about acid-dissociation constant: brainly.com/question/9728159
Answer:
The ground state configuration for the negative ion of a halogen. ... A possible excited state electronic configuration. 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^1 6s^1. Its symbol is the double solid lin, // or ||, in a cell diagram.
Answer:
active transport
Explanation:
Active transport -
It refers to the movement of the molecules from a region of lower concentration towards a region of higher concentration via a membrane , is referred to as active transport.
The process of active transport need to have some cellular energy .
Hence,
The concentration of potassium is maintained in the red blood cells via the process of active transport.
The answer is C, because the moon does rotate it just rotates at the perfect time for us to never side the other side of it.