We will balance the equation in the following order: metals, amethals, carbon, hydrogen and oxygen (the most common order).
The metal present in the equation is Sr, which is already balanced (there are 1 on each side of the equation).
The amethal present in the equation is Cl. There is 2 Cl in the left side and only one in the right side. So, we will multiply the quantity of the molecule that contains Cl by 2. Doing this, we'll obtain:
Looking at the equation, we can see that it is now fully balanced. Hence, a balanced equation of the reaction is:
Answer:
C
Explanation:
acids are corrosive since they tend to destroy every single thing they do get a big example is the acidic rain which tends to corrode iron sheet thus making them to appear worn out and full of rust
Answer:
Mostly Para
Explanation:
First, let's assume that the molecule is the toluene (A benzene with a methyl group as radical).
Now the nitration reaction is a reaction in which the nitric acid in presence of sulfuric acid, react with the benzene molecule, to introduce the nitro group into the molecule. The nitro group is a relative strong deactiviting group and is metha director, so, further reactions that occur will be in the metha position.
Now, in this case, the methyl group is a weak activating group in the molecule of benzene, and is always ortho and para director for the simple fact that this molecule (The methyl group) is a donor of electrons instead of atracting group of electrons. Therefore for these two reasons, when the nitration occurs,it will go to the ortho or para position.
Now which position will prefer to go? it's true it can go either ortho or para, however, let's use the steric hindrance principle. Although the methyl group it's not a very voluminous and big molecule, it still exerts a little steric hindrance, and the nitro group would rather go to a position where no molecule is present so it can attach easily. It's like you have two doors that lead to the same place, but in one door you have a kid in the middle and the other door is free to go, you'll rather pass by the door which is free instead of the door with the kid in the middle even though you can pass for that door too. Same thing happens here. Therefore the correct option will be mostly para.
<h3><u>Answer;</u></h3>
True
<h3><u>Explanation</u>;</h3>
- The molecule NH3 contains all single bonds.
- NH3 has a three single covalent bond among its nitrogen and hydrogen atoms,because one valence electron of each of three atom of hydrogen is shared with three electron.
- There are three covalent bonds are in NH3 . Each hydrogen make a single bond with nitrogen and there is also a pair of electron which is unpaired from nitrogen.