The mass on the left has a downslope weight of
W1 = 3.5kg * 9.8m/s² * sin35º = 19.7 N
The mass on the right has a downslope weight of
W2 = 8kg * 9.8m/s² * sin35º = 45.0 N
The net is 25.3 N pulling downslope to the right.
(a) Therefore we need 25.3 N of friction force.
Ff = 25.3 N = µ(m1 + m2)gcosΘ = µ * 11.5kg * 9.8m/s² * cos35º
25.3N = µ * 92.3 N
µ = 0.274
(b) total mass is 11.5 kg, and the net force is 25.3 N, so
acceleration a = F / m = 25.3N / 11.5kg = 2.2 m/s²
tension T = 8kg * (9.8sin35 - 2.2)m/s² = 27 N
Check: T = 3.5kg * (9.8sin35 + 2.2)m/s² = 27 N √
hope this helps. :)
Answer:
a) iodine solution
Explanation:
this is because in the presence of starch, iodine turns a blue/black colour.
hope this helps!^^
Answer:
35.6 N
Explanation:
We can consider only the forces acting along the horizontal direction to solve the problem.
There are two forces acting along the horizontal direction:
- The horizontal component of the pushing force, which is given by

with 
- The frictional force, whose magnitude is

where
, m=8.2 kg and g=9.8 m/s^2.
The two forces have opposite directions (because the frictional force is always opposite to the motion), and their resultant must be zero, because the suitcase is moving with constant velocity (which means acceleration equals zero, so according to Newton's second law: F=ma, the net force is zero). So we can write:

Well let's convert all these values out of standard form first:
2x10^-2 = 2x0.01 = 0.02m = 2cm
2x10^0m = 2x1 = 2m
2x10^-1m = 2x0.1 = 0.2m = 20cm
2x10^1m = 2x10 = 20m
Based on that, we know that 20cm is roughly equivalent to a basketball (at least it's closer than all the other values), so the answer is therefore 2 - 2x10^-1m
Answer:
F = 50[N], to the left.
v = 10.52 [m/s]
Explanation:
<u>First problem</u>
<u />
In order to solve this problem we must apply Newton's laws, in such a way that we must perform a summation of forces on the horizontal axis. In this way we will analyze each force and the direction of action.
The offensive player is applying a force of 100N to the right, while the defensive player applies a force of 150N to the left. In this way performing the summation of forces we have.
100 - 150 = F
F = - 50 [N]
Note: The negative sign indicates that the resulting force is to the left.
<u>Second problem</u>
<u />
We must remember that the definition of speed is equal to the relationship between distance over time.
x = distance = 100 [m]
t = time = 9.5 [s]
v = x/t
v = 100/9.5
v = 10.52 [m/s]
<u />