1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alla [95]
3 years ago
5

A beam of span L meters simply supported by the ends, carries a central load W. The beam section is shown in figure. If the maxi

mum shear stress is 450 N/cm2 when the maximum bending stress is 1500 N/cm2. Calculate the value of the centrally applied point load W and the span L. The overall height of the I section is 29 cm.

Engineering
1 answer:
saw5 [17]3 years ago
4 0

Answer:

W = 11,416.6879 N

L ≈ 64.417 cm

Explanation:

The maximum shear stress, \tau_{max}, is given by the following formula;

\tau_{max} = \dfrac{W}{8 \cdot I_c \cdot t_w} \times \left (b\cdot h^2 - b\cdot h_w^2 + t_w \cdot h^2_w \right )

t_w = 1 cm = 0.01

h = 29 cm = 0.29 m

h_w = 25 cm = 0.25 m

b = 15 cm = 0.15 m

I_c = The centroidal moment of inertia

I_c = \dfrac{1}{12} \cdot \left (b \cdot h^3 - b \cdot h_w^3 + t_w \cdot h_w^3 \right )

I_c = 1/12*(0.15*0.29^3 - 0.15*0.25^3 + 0.01*0.25^3) = 1.2257083 × 10⁻⁴ m⁴

Substituting the known values gives;

I_c = \dfrac{1}{12} \cdot \left (0.15 \times 0.29^3 - 0.15 \times 0.25^3 + 0.01 \times 0.25^3 \right )  = 1.2257083\bar 3 \times 10^{-4}

I_c = 1.2257083\bar 3 × 10⁻⁴ m⁴

From which we have;

4,500,000 = \dfrac{W}{8 \times 1.225708\bar 3 \times 10 ^{-4}\times 0.01} \times \left (0.15 \times 0.29^2 - 0.15 \times 0.25^2 + 0.01 \times 0.25^2 \right )

Which gives;

W = 11,416.6879 N

\sigma _{b.max} = \dfrac{M_c}{I_c}

\sigma _{b.max} = 1500 N/cm² = 15,000,000 N/m²

M_c = 15,000,000 × 1.2257083 × 10⁻⁴ ≈ 1838.56245 N·m²

From Which we have;

M_{max} = \dfrac{W \cdot L}{4}

L = \dfrac{4 \cdot M_{max}}{W} = \dfrac{4 \times 1838.5625}{11,416.6879} \approx 0.64417

L ≈ 0.64417 m ≈ 64.417 cm.

You might be interested in
Steam enters an adiabatic turbine at 400◦C, 2 MPa pressure. The turbine has an isentropic efficiency of 0.9. The exit pressure i
pychu [463]

Answer:

Explanation:

Find attached the solution

8 0
3 years ago
For a steel alloy it has been determined that a carburizing heat treatment of 15 h duration will raise the carbon concentration
Amiraneli [1.4K]

Answer:

135 hour

Explanation:

It is given that a carburizing heat treatment of 15 hour will raise the carbon concentration by 0.35 wt% at a point of 2 mm from the surface.

We have to find the time necessary to achieve the same concentration at a 6 mm position.

we know that \frac{x_1^2}{Dt}=constant where x is distance and t is time .As the temperature is constant so D will be also constant

So \frac{x_1^2}{t}=constant

then \frac{x_1^2}{t_1}=\frac{x_2^2}{t_2} we have given x_1=2 mm\ ,t_1=15 hour\ ,x_2=6\ mm and we have to find t_2 putting all these value in equation

\frac{2^2}{15}=\frac{6^2}{t_2}

so t_2=135\ hour

5 0
3 years ago
Which of the following describes the most direct and attainable way to reduce pollution in the environment?
kirill115 [55]

Answer:

i think its A. increasing research to find alternative natural resources for the future

5 0
3 years ago
Read 2 more answers
For a project in C++ we are supposed toDesign a class named Month. The class should have the following private members:-name: a
mart [117]

Answer:

include <iostream>

using namespace std;

 

class Month

{

public:

 Month (char firstLetter, char secondLetter, char thirdLetter);

 

 Month (int monthNum);

.

 

 Month();

 void outputMonth_num();

 

 

 void outputMonthLetters();

private:

 int month;

};

 

 

int main ()

{

 //

 // Variable declarations

 //

 int monthNum;

 char firstLetter, secondLetter, thirdLetter;    

 char testAgain;              

 

 do {

 

   cout << endl;

   cout << "Testing the default constructor ..." << endl;

   Month defaultMonth;

   defaultMonth.outputMonth_num();

   defaultMonth.outputMonthLetters();

 

   //

   // Construct a month using the constructor with one integer argument

   //

   cout << endl;

   cout << "Testing the constructor with one integer argument..." << endl;

   cout << "Enter a month number: ";

   cin >> monthNum;

 

   Month testMonth1(monthNum);

   testMonth1.outputMonth_num();

   testMonth1.outputMonthLetters();

 

   //

   // Construct a month using the constructor with three letters as arguments

   //

   cout << endl;

   cout << "Testing the constructor with 3 letters as arguments ..." << endl;

   cout << "Enter the first three letters of a month (lowercase): ";

   cin >> firstLetter >> secondLetter >> thirdLetter;

   cout << endl;

 

   Month testMonth2(firstLetter, secondLetter, thirdLetter);

   testMonth2.outputMonth_num();

   testMonth2.outputMonthLetters();

 

   //

   // See if user wants to try another month

   //

   cout << endl;

   cout << "Do you want to test again? (y or n) ";

   cin >> testAgain;

 }

 while (testAgain == 'y' || testAgain == 'Y');

 

 return 0;

}

 

 

Month::Month(char firstLetter, char secondLetter, char thirdLetter)

{

if ((firstLetter == 'j')&&(secondLetter == 'a')&&(thirdLetter == 'n'))

  outputMonth_num = 1;

if ((firstLetter == 'f')&&(secondLetter == 'e')&&(thirdLetter == 'b'))

  outputMonth_num = 2;

if ((firstLetter == 'm')&&(secondLetter == 'a')&&(thirdLetter == 'r'))

  outputMonth_num = 3;

if ((firstLetter = 'a')&&(secondLetter == 'p')&&(thirdLetter == 'r'))

  outputMonth_num = 4;

if ((firstLetter == 'm')&&(secondLetter == 'a')&&(thirdLetter == 'y'))

  outputMonth_num = 5;

if ((firstLetter == 'j')&&(secondLetter == 'u')&&(thirdLetter == 'n'))

  outputMonth_num = 6;

if ((firstLetter == 'j')&&(secondLetter == 'u')&&(.thirdLetter == 'l'))

  outputMonth_num = 7;

if ((firstLetter == 'a')&&(secondLetter == 'u')&&(thirdLetter == 'g'))

  outputMonth_num = 8;

if ((firstLetter == 's')&&(secondLetter == 'e')&&(thirdLetter == 'p'))

  outputMonth_num = 9;

if ((firstLetter == 'o')&&(secondLetter == 'c')&&(thirdLetter == 't'))

  outputMonth_num = 10;

if ((firstLetter == 'n')&&(secondLetter == 'o')&&(thirdLetter == 'v'))

 outputMonth_num = 11;

if ((firstLetter == 'd')&&(secondLetter == 'e')&&(thirdLetter == 'c'))

 outputMonth_num = 12;

}

 

Month::inputMonthByNumber

{

if (Month_num > 12 && Month_num < 1)

cout << "Invalid number for Month, please choose 1-12)\n";

}

 

void Month::outputMonth_num()

{

 if (month >= 1 && month <= 12)

   cout ><< "Month: " << month << endl;

 else

   cout << "Error - The month is not a valid!" << endl;

}

 

void Month::outputMonthLetters()

{

 switch (month)

   {

   case 1:

     cout << "Jan" << endl;

     break;

   case 2:

     cout << "Feb" << endl;

     break;

   case 3:

     cout << "Mar" << endl;

     break;

   case 4:

     cout << "Apr" << endl;

     break;

   case 5:

     cout << "May" << endl;

     break;

   case 6:

     cout << "Jun" << endl;

     break;

   case 7:

     cout << "Jul" << endl;

     break;

   case 8:

     cout << "Aug" << endl;

     break;

   case 9:  

     cout << "Sep" << endl;

     break;

   case 10:

     cout << "Oct" << endl;

     break;

   case 11:

     cout << "Nov" << endl;

     break;

   case 12:

     cout << "Dec" << endl;

     break;

   default:

     cout << "Error - the month is not a valid!" << endl;

   }

}

7 0
3 years ago
(SI units) Molten metal is poured into the pouring cup of a sand mold at a steady rate of 400 cm3/s. The molten metal overflows
maxonik [38]

Answer:

diameter of the sprue at the bottom is 1.603 cm

Explanation:

Given data;

Flow rate, Q = 400 cm³/s

cross section of sprue: Round

Diameter of sprue at the top d_{top} = 3.4 cm

Height of sprue, h = 20 cm = 0.2 m

acceleration due to gravity g = 9.81 m/s²

Calculate the velocity at the sprue base

V_{base} = √2gh

we substitute

V_{base} = √(2 × 9.81 m/s² × 0.2 m )

V_{base} = 1.98091 m/s

V_{base} = 198.091 cm/s

diameter of the sprue at the bottom will be;

Q = AV = (πd_{bottom}^2/4) × V_{base}

d_{bottom} = √(4Q/πV_{base})

we substitute our values into the equation;

d_{bottom} = √(4(400 cm³/s) / (π×198.091 cm/s))

d_{bottom}  = 1.603 cm

Therefore, diameter of the sprue at the bottom is 1.603 cm

6 0
2 years ago
Other questions:
  • Find the inductive reactance per mile of a single-phase overhead transmission line operating at 60 Hz, given the conductors to b
    6·1 answer
  • A heat engine receives heat from a heat source at 1453 C and has a thermal efficiency of 43 percent. The heat engine does maximu
    11·1 answer
  • When should u check ur review mirror
    5·1 answer
  • Tech A says that in some cases, the electronic brake control module can be programmed with a new tire size to restore proper ele
    7·1 answer
  • A belt drive was designed to transmit the power of P=7.5 kW with the velocity v=10m/s. The tensile load of the tight side is twi
    14·1 answer
  • Consider a section of muscle tissue of a cylindrical shape with a radius of 1.5 cm. During highly rigorous exercise, metabolic p
    8·1 answer
  • Benzene gas (C6H6) at 25° C and 1 atm, enters a combustion chamber operating at steady state and burns with 95% theoretical air
    6·2 answers
  • Which option identifies the step of the implementation phase represented in the following scenario?
    9·2 answers
  • What level of wildfire risk do people living in Boulder have?
    9·1 answer
  • The notation on one's license that the person must wear glasses
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!