Answer:
horizontal component of normal force is equal to the centripetal force on the car
Explanation:
As the car is moving with uniform speed in circle then the force required to move in the circle is towards the center of the circle
This force is due to friction force when car is moving in circle with uniform speed
Now it is given that car is moving on the ice surface such that the friction force is zero now
so here we can say that centripetal force is due to component of the normal force which is due to banked road
Now we have


so we have

so this is horizontal component of normal force is equal to the centripetal force on the car
Given :
The ball of a ballpoint pen is 0.5 mm in diameter and has an ASTM grain size of 12.
To Find :
How many grains are there in the ball?
Solution :
Volume of ball of the ballpoint is :

Now, grain size of 12 has about 520000 grains/mm³.
Therefore, number of grains are :

Answer:
-1m/s
Explanation:
We can calculate the speed of block A after collision
According to collision theory:
MaVa+MbVb = MaVa+MbVb (after collision)
Substitute the given values
5(3)+10(0) = 5Va+10(2)
15+0 = 5Va + 20
5Va = 15-20
5Va = -5
Va = -5/5
Va = -1m/s
Hence the velocity of ball A after collision is -1m/s
Note that the velocity of block B is zero before collision since it is stationary
F = m*a, mass times acceleration.
F = 15*10 = 150 N
Data:
F (force) = ? (Newton)
k (<span>Constant spring force) = 50 N/m
x (</span>Spring deformation) = 15 cm → 0.15 m
Formula:

Solving:



Data:
E (energy) = ? (joule)
k (Constant spring force) = 50 N/m
x (Spring deformation) = 15 cm → 0.15 m
Formula:

Solving:(Energy associated with this stretching)



