Basis of the calculation: 100g
For Carbon:
Mass of carbon = (100 g)(0.80) = 80 g
Number of moles of carbon = (80 g)(1 mole / 12g) = 20/3
For Hydrogen:
Mass of hydrogen = (100 g)(0.20) = 20 g
Number of moles of hydrogen = (20 g)(1 mole / 1 g) = 20
Translating the answer to the formula of the substance,
C20/3H20
Dividing the answer,
CH3
The molar mass of the empirical formula is:
12 + 3 = 15 g/mol
Since, the molar mass given for the molecular formula is 30.069 g/mol, the molecular equation is,
C2H6
ANSWER: C2H6
99% of the filtrate's water that enter bowman's capsule is reabsorbed into the blood. This is because the water and the salts contained in the filtrate are needed for optimal functioning of the body system.
Answer:
Pb(NO₃)₂ + K₂CrO₄ ⟶ PbCrO₄ + 2KNO₃
Step-by-step explanation:
The unbalanced equation is
Pb(NO₃)₂ + K₂CrO₄ ⟶ PbCrO₄ + KNO₃
Notice that the complex groups like NO₃ and CrO₄ stay the same on each side of the equation.
One way to simplify the balancing is to replace them with a single letter.
(a) For example, let <em>X = NO₃</em> and <em>Y =CrO₄</em>. Then, the equation becomes
PbX₂ + K₂Y ⟶ PbY + KX
(b) You need 2X on the right, so put a 2 in front of KX.
PbX₂ + K₂Y ⟶ PbY + 2KX
(c) Everything is balanced. Now, replace X and Y with their original meanings. The balanced equation is
Pb(NO₃)₂ + K₂CrO₄ ⟶ PbCrO₄ + 2KNO₃
When heat is added to a substance, the molecules and atoms vibrate faster. As atoms vibrate faster, the space between atoms increases.