Answer:
24.0 g C₃H₈
Explanation:
To find the mass of C₃H₈, you need to (1) convert grams CO/H₂ to moles CO/H₂ (via molar mass), then (2) convert moles CO/H₂ to moles C₃H₈ (via mole-to-mole ratio from reaction coefficients), and then (3) convert moles C₃H₈ to grams C₃H₈ (via molar mass). It is important to arrange the conversions/ratios in a way that allows for the cancellation of units (the desired unit should be in the numerator). The final answer should have 3 sig figs to reflect the sig figs in the given values.
Molar Mass (CO): 12.011 g/mol + 15.998 g/mol
Molar Mass (CO): 28.009 g/mol
Molar Mass (H₂): 2(1.008 g/mol)
Molar Mass (H₂): 2.016 g/mol
Molar Mass (C₃H₈): 3(12.011 g/mol) + 8(1.008 g/mol)
Molar Mass (C₃H₈): 44.097 g/mol
3 CO + 7 H₂ ----> 1 C₃H₈ + 3 H₂O
^ ^ ^
45.8 g CO 1 mole 1 mole C₃H₈ 44.097 g
----------------- x ------------------ x -------------------- x ------------------ =
28.009 g 3 moles CO 1 mole
= 24.0 g C₃H₈
87.3 g H₂ 1 mole 1 mole C₃H₈ 44.097 g
---------------- x --------------- x --------------------- x ----------------- =
2.016 g 7 moles H₂ 1 mole
= 273 g C₃H₈
It was necessary to find the mass of the products from both of the reactants because you did not know which one was the limiting reagent. The limiting reagent is the reactant which is completely used up first. Because CO produced the smaller amount of product, it must be the limiting reagent. Therefore, the actual amount of C₃H₈ produced is 24.0 grams.
There the protons and the nuetrons
Answer: protons and neutrons.
The nucleus is made up of 3 subatomic particles that are protons,neutrons and electrons.
General notation of an element is 
where, X is the Element, A is the Atomic Mass and Z is the Atomic Number
If we know the number of protons we can easily find out the atomic number of any element because Atomic Number = Number of protons in an element.
And in addition if we know the number of neutrons we can easily find out the atomic mass of an element because
Atomic Mass = (Number of protons) + (Number of neutrons)
If we get to know the atomic number and atomic mass, we can easily tell what element is it by looking from the periodic table.
Answer: Volume of the gas at STP is 22.53 L.
Explanation:
Given : Volume = 125 mL (as 1 mL = 0.001 L) = 0.125 L
Temperature = 
Pressure = 
According to the ideal gas equation, the volume of given nitrogen gas is calculated as follows.
PV = nRT
where,
P = pressure
V = volume
n = number of moles
R = gas constant = 0.0821 L atm/mol K
T = temperature
Substitute the values into above formula as follows.

Hence, volume of the gas at STP is 22.53 L.