Answer:
39.72 g
Explanation:
Given data:
Mass of CsF = 15.2 g
Mass of XeF₆ = 260 g
Mass of Cs[XeF₇] = ?
Solution:
Chemical reaction:
CsF + XeF₆ → Cs[XeF₇]
Number of moles of CsF:
Number of moles = mass/ molar mass
Number of moles = 15.2 g/151.9 g/mol
Number of moles = 0.1 mol
Number of moles of XeF₆ :
Number of moles = mass/ molar mass
Number of moles = 260 g/245.28 g/mol
Number of moles = 1.06 mol
Now we will compare the moles of Cs[XeF₇] with both reactants.
CsF : Cs[XeF₇]
1 : 1
0.1 : 0.1
XeF₆ : Cs[XeF₇]
1 : 1
1.06 ; 1.06
Number of moles of Cs[XeF₇] produce by CsF are less so it will limiting reactant and limit the yield of Cs[XeF₇].
Mass of Cs[XeF₇]:
Mass = number of moles × molar mass
Mass = 0.1 mol × 397.2 g/mol
Mass = 39.72 g
The given question is incomplete. The complete question is as follows.
A 2.300×10−2 m solution of nacl in water is at 20.0∘c. the sample was created by dissolving a sample of nacl in water and then bringing the volume up to 1.000 l. it was determined that the volume of water needed to do this was 999.4 ml . the density of water at 20.0∘c is 0.9982 g/ml.
Calculate the molality of the salt solution.
Express your answer to four significant figures and include the appropriate units.
Explanation:
Molality is defined as the number of moles present in kg of a solvent.
Mathematically, Molality = 
Also,
Mole of solute = Molarity of solute x Volume of solution
= (0.0230 M) x (1.000 L) = 0.0230 mol of solute
Therefore, mass of solvent will be as follows.
= 997.7 g
= 0.9977 kg (as 1 kg = 1000 g)
Therefore, we will calculate the molality as follows.
Molality =
= 0.02306 mol/kg
thus, we can conclude that molality of the given solution is 0.02306 mol/kg.
~Shoto Todoroki here~
<h2>If you are referring to a neutral atom, then Vanadium (V) has that particular electron configuration.</h2>
Remember that for neutral atoms, the number of electrons must equal the atomic number. Adding up all the electrons from the given configuration will give
This means that the atom you're looking for has an atomic mass of 23, which corresponds to the atomic mass of Vanadium, a transition metal located in the fourth row, group 5 of the periodic table.
Vanadium's noble gas shorthand notation is
V:[Ar]4s23d3
hope this helps :))
Answer:
The third choice
Explanation:
The law of conservation of mass tells us that the mass of the reactants and products in a chemical reaction will be equal to one another. Equations follow the law of conservation of mass when they are balanced, which means that they have the same number and type of atoms on each side.
When individual atoms are counted, the third choice has the same number and type of atoms on each side: 1 gallium, three cesium and three fluorine.