If Ka for HCN is 6. 2×10^−10 at 25 °C, then the value of Kb for cn− at 25 °C is 1.6 × 10^(-5).
<h3>What is base dissociation constant? </h3><h3 />
The base dissociation constant (Kb) is defined as the measurement of the ions which base can dissociate or dissolve in the aqueous solution. The greater the value of base dissociation constant greater will be its basicity an strength.
The dissociation reaction of hydrogen cyanide can be given as
HCN --- (H+) + (CN-)
Given,
The value of Ka for HCN is 6.2× 10^(-10)
The correlation between base dissociation constant and acid dissociation constant is
Kw = Ka × Kb
Kw = 10^(-14)
Substituting values of Ka and Kw,
Kb = 10^(-14) /{6.2×10^(-10) }
= 1.6× 10^(-5)
Thus, the value of base dissociation constant at 25°C is 1.6 × 10^(-5).
learn more about base dissociation constant :
brainly.com/question/9234362
#SPJ4
1.806x10^24
Written equation form(always start the equation off with what you know based off of the question!):
3mol(CCl4)•6.022x10^23/1mol = 1.806x10^24
Good luck!
Answer:
kinetic energy
Explanation:
When the object is released, the gravitational potential energy is gradually converted into kinetic energy as it picks up speed.
Answer:
C. The first ionization energy decreases because the outermost
electron is farther from the nucleus.
Explanation:
Ionization energy trend along group:
As we move down the group atomic radii increased with increase of atomic number. The addition of electron in next level cause the atomic radii to increased. The hold of nucleus on valance shell become weaker because of shielding of electrons thus size of atom increased.
As the size of atom increases the ionization energy from top to bottom also decreases because it becomes easier to remove the electron because of less nuclear attraction and as more electrons are added the outer electrons becomes more shielded and away from nucleus.
Ionization energy trend along period:
As we move from left to right across the periodic table the number of valance electrons in an atom increase. The atomic size tend to decrease in same period of periodic table because the electrons are added with in the same shell. When the electron are added, at the same time protons are also added in the nucleus. The positive charge is going to increase and this charge is greater in effect than the charge of electrons. This effect lead to the greater nuclear attraction. The electrons are pull towards the nucleus and valance shell get closer to the nucleus. As a result of this greater nuclear attraction atomic radius decreases and ionization energy increases because it is very difficult to remove the electron from atom and more energy is required.
- 407.4 kJ of heat is released.
<u>Explanation:</u>
We have to write the balanced equation as,
2 C₂H₆(g) + 7O₂ → 4CO₂ + 6H₂O
Here 2 moles of ethane reacts in this reaction.
Now we have to find out the amount of ethane reacted using its given mass and molar mass as,
2 mol C₂H₆ × 30.07 g of C₂H₆ / 1 mol C₂H₆ = 60.14 g of C₂H₆
Heat released = ΔH × given mass / 60.14
= - 1560. 7 kj ×15.7 g / 60. 14 g = -407. 4 kJ