Answer:
∆H° rxn = - 93 kJ
Explanation:
Recall that a change in standard in enthalpy, ∆H°, can be calculated from the inventory of the energies, H, of the bonds broken minus bonds formed (H according to Hess Law.
We need to find in an appropiate reference table the bond energies for all the species in the reactions and then compute the result.
N₂ (g) + 3H₂ (g) ⇒ 2NH₃ (g)
1 N≡N = 1(945 kJ/mol) 3 H-H = 3 (432 kJ/mol) 6 N-H = 6 ( 389 kJ/mol)
∆H° rxn = ∑ H bonds broken - ∑ H bonds formed
∆H° rxn = [ 1(945 kJ) + 3 (432 kJ) ] - [ 6 (389 k J]
∆H° rxn = 2,241 kJ -2334 kJ = -93 kJ
be careful when reading values from the reference table since you will find listed N-N bond energy (single bond), but we have instead a triple bond, N≡N, we have to use this one .
Hello:
In this case, we will use the Clapeyron equation:
P = ?
n = 8 moles
T = 250 K
R = 0.082 atm.L/mol.K
V = 6 L
Therefore:
P * V = n * R * T
P * 6 = 8 * 0.082* 250
P* 6 = 164
P = 164 / 6
P = 27.33 atm
Hope that helps!
Answer: A metallic bond is a type of chemical bond formed between positively charged atoms in which the free electrons are shared among a lattice of cations. In contrast, covalent and ionic bonds form between two discrete atoms. Metallic bonding is the main type of chemical bond that forms between metal atoms.
Explanation:
NOT MY WORDS! I HOPE THIS HELP!!!!!
The characteristic of the Bohr model that would best support his observation is this assumption: "The energy of the electron in an orbit is proportional to its distance from the nucleus. The further the electron is from the nucleus, the more energy it has." The discrete, bright, colored lines might represent the electrons and its distance from the nucleus. The lights are caused by the energy it has.