Answer:
d. N
Explanation:
Chemical equation:
Pb(NO₃)₂(aq) + K₂SO₄(aq) → PbSO₄(s) + KNO₃(aq)
Balanced Chemical equation:
Pb(NO₃)₂(aq) + K₂SO₄(aq) → PbSO₄(s) + 2KNO₃(aq)
Ionic equation:
Pb²⁺(aq) + 2NO₃⁻(aq) + 2K⁺(aq) + SO₄²⁻(aq) → PbSO₄(s) + 2K⁺(aq) + 2NO₃⁻(aq)
Net ionic equation:
Pb²⁺(aq) + SO₄²⁻(aq) → PbSO₄(s)
The NO₃⁻(aq) and K⁺(aq)are spectator ions that's why these are not written in net ionic equation. The PbSO₄ can not be splitted into ions because it is present in solid form.
Spectator ions:
These ions are same in both side of chemical reaction. These ions are cancel out. Their presence can not effect the equilibrium of reaction that's why these ions are omitted in net ionic equation.
Answer:
M KIO3 = 1.254 mol/L
Explanation:
∴ w KIO3 = 553 g
∴ mm KIO3 = 214.001 g/mol
∴ volumen sln = 2.10 L
⇒ mol KIO3 = (553 g)×(mol/210.001 g) = 2.633 mol
⇒ M KIO3 = (2.633 mol KIO3 / (2.10 L sln)
⇒ M KIO3 = 1.254 mol/L
There are eight moles of oxygen atoms in 1 mole of
.
<h3>What is the number of moles of oxygen atoms?</h3>
We know that a compound is composed of atoms. The atoms that make up the molecule are chemically combined. It is usual that the number of atoms in the compound would correspond with the chemical formula.
Now we have the compound
. In one mole of the compound we have;
- 9 Moles of manganese atom
- 2 moles of chlorine atom
- 8 moles of oxygen atom
Thus, there are eight moles of oxygen atoms in 1 mole of
.
Learn more about atoms;brainly.com/question/1566330
#SPJ1
Answer:
The number of neutrons present in one atom of isotope of Silicon of mass 28 amu is<u> 14 neutrons</u>
Explanation:
Symbol of Si isotope

<u>Number of Neutron = Mass number - Atomic Number</u>
Mass number = Total number of protons and neutrons present in the nucleus of the atom.For Si = 28 amu
Atomic Number = Total number of Protons present in the nucleus.
Si = 14
Number of neutron = 24 - 14
= 14
Atomic Number of Lithium is 3, so it has 3 electrons in its neutral state. Also, Li₂ will have 6 electrons. But the chemical formula we are given has a negative charge on it (i.e Li₂⁻) so there is an additional electron (RED) present on this compound. So, the total number of electrons are 7. The
MOT diagram for this compound is shown below. According to diagram we are having 4 electrons in Bonding Molecular Orbitals (
BMO) and 3 electrons in Anti-Bonding Molecular Orbitals (
ABMO). Bond Order is calculated as,
Bond Order = (# of e⁻s in BMO - # of e⁻s in ABMO) ÷ 2
Bond Order = (4 - 3) ÷ 2
Bond Order = 1 ÷ 2
Or,
Bond Order = 1/2Or,
Bond Order = 0.5