The smallest functional and structural unit of an organism, usually microscopic and consisting of cytoplasm and a nucleus in a membrane.
I would believe the answer to this question is D. According to the concept of the tragedy of the commons, shared resources are used by more than one organism. Due to the large consumption of shared resources they start to be fewer and fewer in number and over time if we are not careful they will be depleted.
Answer:
it tells us of the specific amount of energy required to change the state of one mole of a substance either from solid to liquid or liquid to gas and vice versa without change in temperature
Answer:
2.04 x 10²⁴ molecules
Explanation:
Given parameters:
Mass of Be(OH)₂ = 145.5g
To calculate the number of molecules in this mass of Be(OH)₂ we follow the following steps:
>> Calculate the number of moles first using the formula below:
Number of moles = mass/molarmass
Since we have been given the mass, let us derive the molar mass of Be(OH)₂
Atomic mass of Be = 9g
O = 16g
H = 1g
Molar Mass = 9 + 2(16 + 1)
= 9 + 34
= 43g/mol
Number of moles = 145.5/43 = 3.38mol
>>> We know that a mole is the amount of substance that contains Avogadro’s number of particles. The particles can be atoms, molecules, particles etc. Therefore we use the expression below to determine the number of molecules in 3.38mol of Be(OH)₂:
Number of
molecules= number of moles x 6.02 x 10²³
Number of molecules= 3.38 x 6.02 x 10²³
= 20.37 x 10²³ molecules
= 2.04 x 10²⁴ molecules