Answer:
the coin does not slide off
Explanation:
mass (m) = 5 g = 0.005 kg
distance (r) = 15 cm = 0.15 m
static coefficient of friction (μs) = 0.8
kinetic coefficient of friction (μk) = 0.5
speed (f) = 60 rpm
acceleration due to gravity (g) = 9.8 m/s^{2}
lets first find the angular speed of the table
ω = 2πf
ω = 2 x π x 60 x 
ω = 6.3 s^{-1]
Now lets find the maximum static force between the coin and the table so we can get the maximum velocity the coin can handle without sliding
static force (Fs) = ma
static force (Fs) = μs x Fn = μs x m x g
Fs = 0.8 x 0.005 x 9.8 = 0.0392 N
Fs = ma
0.0392 = 0.005 x a
a = 7.84 m/s^{2}
= a x r
= 7.84 x 0.15
Vmax = 1.08 m/s
ωmax = 
ωmax =
= 7.2 s^{-1}
now that we have the maximum angular acceleration of the table, we can calculate its maximum speed in rpm
Fmax = 
Fmax =
= 68.7 rpm
since the table is rotating at a speed less than the maximum speed that the static friction can hold coin on the table with, the coin would not slide off.
I uploaded the answer to
a file hosting. Here's link:
bit.
ly/3gVQKw3
Answer:
the color of the light after it has passed through the cellophane
Explanation:
Since in the given experiment, there is an impact of various colors of light on the cell i.e. photoelectric that should be measured. The photocell should be placed in a circuit when the current would passed. For every color that falls on the photocell, the value of the current that passed via the cell represent an idea.
In the given situation the color of light shows an independent variable and the dependent variable is clicks per minute or the current that passed through the cell