Answer:
the lens you must select has an angle of 143º measured with respect to the horizontal, this angle is 53º with respect to the vertical.
Explanation:
The glare is caused by the reflection of light in the water, the polarization of the reflected light is polarized in a direction parallel to the surface of the water, the polarization is total for the angles
n = tan
\theta_{p} = tan⁻¹ n
the refractive index for seawater is 1.33
\theta_{p}= tan⁻¹ 1.33
\theta_{p} = 53º
for this angle the light is totally polarized, for the other angles the polarization is partial.
Based on this, the lenses must eliminate this polarization, so its polarization direction must have 90º with respect to this polarization,
\theta_{lens} = 53 +90
\theta_{lens}= 143º
Therefore, the lens you must select has an angle of 143º measured with respect to the horizontal, this angle is 53º with respect to the vertical.
A lens that could work is one that is polarized 45º with respect to the vertical.
Answer:
Saturn's differential rotation will cause the length of a day measures to be longer by 0.4 hours
Explanation:
Differential rotation occurs due to the difference in angular velocities of an object as we move along the latitude of the or as we move into different depth of the object, indicating the observed object is in a fluid form
Saturn made almost completely of gas and has differential motion given as follows
Rotation at the equator = 10 hours 14 minutes
Rotation at high altitude = 10 hours 38 minutes
Therefore;
The differential rotation = 10 hours 38 minutes - 10 hours 14 minutes
The differential rotation = 24 minutes = 24 minutes × 1 hour/(60 minutes) = 0.4 hours
The differential rotation = 0.4 hours
Therefore, the measured day at the higher altitude will be 0.4 longer than at the equator.
Answer: 6.9x 107 in standard form is 69,000,000
Kinetic energy = 1/2mv^2
=1/2(25)(1^2)
= 12.5J
Answer:
Both objects will undergo the same change in velocity
Explanation:
m = Mass of the Earth = 5.972 × 10²⁴ kg
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
r = Radius of Earth = 6371000 m
m = Mass of object
Any object which is falling has only the acceleration due to gravity.

The acceleration due to gravity on Earth is 9.81364 m/s²
So, the speeds of the objects will change at an equal rate of 9.81364 m/s² but the change will be negative when an object is thrown up.
Hence, both objects will undergo the same change in velocity.