An 'alpha particle' is the same thing as the nucleus of a helium atom ...
a little bundle made of 2 protons and 2 neutrons.
A 'beta' particle is an electron.
The mass of an alpha particle is more than 7,000 times the mass of
an electron, so it certainly takes more energy to get it moving.
Answer:
(a.) 4z
(b.) 4w
Explanation:
From the equation y=4zcos(8πwt), where z and w are positive constants.
Comparing this equation to the equation of a wave y = Acos(Wt), where A is the amplitude (largest distance from equilibrium) and W is the angular frequency (W=2πf)
(a.) Comparing our wave equation with the given equation, we see that A = 4z in this case (furthest distance of the mass from equilibrium)
(b.) Comparing similarly we can see from our given equation that angular frequency W =8πw we also know that W = 2πf from our wave equation, therefore 2πf = 8πw
Solving for f we have f = 8πw÷2π
f = 4w (Proves our second answer because the frequency is the number of oscillations completed per second)
I need to force in order to answer. What is it
<span>Matching the boundary with its characteristics
1. Convergent - C. Compression
2. Divergent - B. Along ocean ridges
3. Transform - A. Along strike-slip faults
The compression that occur in the convergent boundary causes the reverse fault in the earth crust.
So in the divergent boundary two crust plates move apart causing a normal fault along the ocean ridges.
The faults in the transform boundary happens at the place where plates slide laterally.</span>
It could be stress or strain