1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ksivusya [100]
3 years ago
9

A ball that is thrown upwards from the ground will eventually reach its highest point and fall back to the ground. Which of the

following quantities will be constant over the course of this up and down motion?
a. The ball's position.b. The ball's speed.c. The ball's acceleration.d. Nonsense! None of these are constant.
Physics
1 answer:
tia_tia [17]3 years ago
5 0

Answer:

option (c)

Explanation:

When an object thrown upwards, the value of acceleration acting on the object is acceleration due to gravity which is always acting towards the earth.

As it falls downwards, the acceleration is again equal to the acceleration due to gravity.

So, the ball's acceleration is constant.

You might be interested in
Explain why ice floats in water. Explain why ice floats in water. Steam is more dense than water. Ice is the same density as wat
Pani-rosa [81]

Hey how's your day going

I hope after I answer that you understand and don't just paste my answer into your assignment!!! (<- read!!!)

Answer \|/

             

Ice is less dense than water.

Reason why \|/

                   

When water freezes the molecules inside completely stop moving (They still vibrate but don't change their position much). In doing so, they spread out a touch which makes it less dense than liquid water. So ice floats

3 0
3 years ago
7. A mother pushes her 9.5 kg baby in her 5kg baby carriage over the grass with a force of 110N @ an angle
jasenka [17]

Weight of the carriage =(m+M)g =142.1\ N

Normal force =Fsin(\theta) + W = 197.1\ N

Frictional force =\mu N=27.59\ N

Acceleration =4.66\ m\ s^{-2}

Explanation:

We have to look into the FBD of the carriage.

Horizontal forces and Vertical forces separately.

To calculate Weight we know that both the mass of the baby and the carriage will be added.

  • So Weight(W) =(m+M)\times g =(9.5+5)\ kg \times 9.8 =142.1\ Newton\ (N)

To calculate normal force we have to look upon the vertical component of forces, as Normal force is acting vertically.We have weight which is a downward force along with F_x, force of 110\ N acting vertically downward.Both are downward and Normal is upward so Normal force =Summation\ of\ both\ forces

  • Normal force (N) = Fsin(\theta)+W=110sin(30) + 142.1 =197.1\ N
  • Frictional force (f) =\mu N=0.14\times 197.1 =27.59\ N

To calculate acceleration we will use Newtons second law.

That is Force is product of mass and acceleration.

We can see in the diagram that F_y=Horizontal and F_x=Vertical component of forces.

So Fnet = Fy(Horizontal) - f(friction) = m\times a

  • Acceleration (a) =\frac{Fcos(\theta)-\mu N}{mass(m)} =\frac{(95.26-27.59)}{14.5}= 4.66\ m\ s{^2 }

So we have the weight of the carriage, normal force,frictional force and acceleration.

3 0
3 years ago
The highest occupiable floor of any building is in the Sears Tower in Chicago. The elevators of the central tower of the buildin
irina1246 [14]

Answer:

9727160J

Explanation:

Given parameters:

Height of elevator rise  = 436m

Force exerted  = 22310N

Unknown:

Work done by the elevator lifting mechanism = ?

Solution:

The work done by a body is the force applied to move a body in a specific direction;

          Work done  = force x distance moved

In this case, the force and distance moved is provided already;

        Work done  = 22310 x 436  = 9727160J

3 0
3 years ago
What planet has a red surface
muminat

Answer:

Mars has a red surface the sun is solar

star so the only thing left is mars

Explanation:

Hope this helped :)

6 0
4 years ago
Read 2 more answers
The engineer of a passenger train traveling at 25.0 m/s sights a freight train whose caboose is 200 m ahead on the same track. T
zaharov [31]

a) The train collide after 22.5 seconds

b) The trains collide at the location x = 537.5 m

c) See graph in attachment

d) The freight train must have a head start of 500 m

e) The deceleration must be smaller (towards negative value) than -0.25 m/s^2

f) The two trains avoid collision if the acceleration of the freight train is at least 0.35 m/s^2

Explanation:

a)

We can describe the position of the passenger train at time t with the equation

x_p(t)=u_p t + \frac{1}{2}at^2

where

u_p = 25.0 m/s is the initial velocity of the passenger train

a=-0.100 m/s^2 is the deceleration of the train

On the other hand, the position of the freight train is given by

x_f(t)=x_0 + v_f t

where

x_0=200 m is the initial position of the freight train

v_f = 15.0 m/s is the constant velocity of the train

The collision occurs if the two trains meet, so

x_p(t)=x_f(t)\\u_pt+\frac{1}{2}at^2=x_0+v_ft\\25t+\frac{1}{2}(-0.100)t^2=200+15t\\0.050t^2-10t+200=0

This is a second-order equation that has two solutions:

t = 22.5 s

t = 177.5 s

We are interested in the 1st solution, which is the first time at which the passenger train collides with the freight train, so t = 22.5 seconds.

b)

In order to find the location of the collision, we just need to substitute the time of the collision into one of the expression of the position of the trains.

The position of the freight train is

x_f(t)=x_0 +v_ft

And substituting t = 22.5 s, we find:

x_f(22.5)=200+(15)(22.5)=537.5 m

We can verify that the passenger train is at the same position at the time of the collision:

x_p(22.5)=(25.0)(22.5)+\frac{1}{2}(-0.100)(22.5)^2=537.5 m

So, the two trains collide at x = 537.5 m.

c)

In the graph in attachment, the position-time graph of each train is represented. We have:

  • The freight train is moving at constant speed, therefore it is represented with a straight line with constant slope (the slope corresponds to its velocity, so 15.0 m/s)
  • The passenger train has a uniformly accelerated motion, so it is a parabola: at the beginning, the slope (the velocity) is higher than that of the freight train, however later it decreases due to the fact that the train is decelerating

The two trains meet at t = 22.5 s, where the position is 537.5 m.

d)

In order to avoid the collision, the freight train must have a initial position of

x_0'

such that the two trains never meet.

We said that the two trains meet if:

x_p(t)=x_f(t)\\u_p t + \frac{1}{2}at^2=x_0' + v_f t

Re-arranging,

\frac{1}{2}at^2+(u_p-v_f)t-x_0'=0\\-\frac{1}{2}at^2+(v_f-u_p)t+x_0'=0

Substituting the values for the acceleration and the velocity,

0.05t^2-10t+x_0'=0

The solution of this equation is given by the formula

t=\frac{+10\pm \sqrt{10^2-4\cdot 0.05 \cdot x_0'}}{2(0.05)}

The two trains never meet if the discrimant is negative (so that there are no solutions to the equation), therefore

10^2-4\cdot 0.05 \cdot x_0'100\\x_0'>500 m

Therefore, the freight train must have a head start of 500 m.

e)

In this case, we want to find the acceleration a' of the passenger train such that the two trains do not collide.

We solve the problem similarly to part d):

x_p(t)=x_f(t)\\u_p t + \frac{1}{2}a't^2=x_0 + v_f t

Re-arranging

\frac{1}{2}a't^2+(u_p-v_f)t-x_0=0\\-\frac{1}{2}a't^2+(v_f-u_p)t+x_0=0

Substituting,

-0.5at^2-10t+200=0

The solution to this equation is

t=\frac{+10\pm \sqrt{10^2-4\cdot (-0.5a') \cdot (200)}}{2(0.05)}

Again, the two trains never meet if the discriminant is negative, so

10^2-4\cdot (-0.5a') \cdot (200)

So, the deceleration must be smaller (towards negative value) than -0.25 m/s^2

f)

In this case, the motion of the freight train is also accelerated, so its position at time t is given by

x_f(t)=x_0 + v_f t + \frac{1}{2}a_ft^2

where a_f is the acceleration of the freight train.

Then we solve the problem similarly to the previous part: the two trains collide if their position is the same,

x_p(t)=x_f(t)\\u_p t + \frac{1}{2}at^2=x_0 + v_f t+\frac{1}{2}a_ft^2

Re-arranging,

\frac{1}{2}(a_f-a)t^2+(v_f-u_p)t+x_0=0\\\\\frac{1}{2}(a_f-0.100)t^2-10t+200=0

And the solution is

t=\frac{+10\pm \sqrt{10^2-4\cdot (0.5a_f-0.05) \cdot (200)}}{2(0.5a_f-0.05)}

Again, the two trains avoid collision if the discriminant is negative, so

10^2-4\cdot (0.5a_f-0.05) \cdot (200)0.35 m/s^2

Learn more about accelerated motion:

brainly.com/question/9527152

brainly.com/question/11181826

brainly.com/question/2506873

brainly.com/question/2562700

#LearnwithBrainly

8 0
3 years ago
Other questions:
  • When you place your feet near the fireplace and they become warm, what type of energy conversion occurs?
    8·2 answers
  • Why does cold weather feel colder inside?
    5·1 answer
  • 5. The Weeks family took a trip to the Dallas 200 for
    10·1 answer
  • Electromagnetic waves vary in
    8·1 answer
  • What is the relationship between potential and kinetic energy in chemical reactions?
    14·1 answer
  • Please help Need good grade
    5·1 answer
  • A bullet of mass 20 gram traveling hoirzentally at 100 m/s embeds itself in the center of a block of wood mass 1 kg which is sus
    7·1 answer
  • ALOT OF POINTS PLZ HURRYQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQWhat does Newton's third law sa
    15·1 answer
  • A baseball weighing 0.5 kg falls from the sky. You hit it with a bat with a force of 50 N at an upward angle of 45°.
    10·1 answer
  • What is the electric potential energy of a 4. 0 uc charge placed at that point where the electric potential at that point in spa
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!