It’s because flourecent lights operate at higher temperatures than incadecent lights.
A: objects that shine
Visible: Our eyes detect visible light<span>. Fireflies, </span>light<span> bulbs, and stars all </span>emit<span> visible </span>light<span>. Ultraviolet: Ultraviolet radiation is </span>emitted<span> by the Sun and are the reason skin tans and burns. "Hot" </span>objects<span> in space </span>emit<span> UV radiation as well.</span>
Answer:
Ok so there are many ways to go at this.
you can get a zip lock bag and put a bunch of plastic around the egg inside the bag. (image down below)
Just anything to slow down the descent speed.
Cushion the egg so that something other than the egg itself absorbs the impact of landing.
Explanation:
Answer:
(a) 2.45×10⁵ N/m
(b) 0.204 m
Explanation:
Here we have that to have a velocity of 2.25 m/s then the relationship between the elastic potential energy of the spring and the kinetic energy of the rocket must be
Elastic potential energy of the spring = Kinetic energy of the rocket

Where:
k = Force constant of the spring
x = Extension of the spring
m = Mass of the rocket
v = Velocity of the rocket
Therefore,

or

(b) Since the maximum acceleration is given as 5.00×g we have
Maximum acceleration = 5.00 × 9.81 = 49.05 m/s²
Hence the force on the rocket is then;
Force = m×a = 1020 × 49.05 = 50,031 N

Therefore,

(a) From which
or
Force constant of the spring, k = 2.45×10⁵ N/m.
The particle has acceleration vector

We're told that it starts off at the origin, so that its position vector at
is

and that it has an initial velocity of 12 m/s in the positive
direction, or equivalently its initial velocity vector is

To find the velocity vector for the particle at time
, we integrate the acceleration vector:

![\vec v=\left[12\,\dfrac{\mathrm m}{\mathrm s}+\displaystyle\int_0^t\left(-2.0\,\dfrac{\mathrm m}{\mathrm s^2}\right)\,\mathrm d\tau\right]\,\vec\imath+\left[\displaystyle\int_0^t\left(4.0\,\dfrac{\mathrm m}{\mathrm s^2}\right)\,\mathrm d\tau\right]\,\vec\jmath](https://tex.z-dn.net/?f=%5Cvec%20v%3D%5Cleft%5B12%5C%2C%5Cdfrac%7B%5Cmathrm%20m%7D%7B%5Cmathrm%20s%7D%2B%5Cdisplaystyle%5Cint_0%5Et%5Cleft%28-2.0%5C%2C%5Cdfrac%7B%5Cmathrm%20m%7D%7B%5Cmathrm%20s%5E2%7D%5Cright%29%5C%2C%5Cmathrm%20d%5Ctau%5Cright%5D%5C%2C%5Cvec%5Cimath%2B%5Cleft%5B%5Cdisplaystyle%5Cint_0%5Et%5Cleft%284.0%5C%2C%5Cdfrac%7B%5Cmathrm%20m%7D%7B%5Cmathrm%20s%5E2%7D%5Cright%29%5C%2C%5Cmathrm%20d%5Ctau%5Cright%5D%5C%2C%5Cvec%5Cjmath)
![\vec v=\left[12\,\dfrac{\mathrm m}{\mathrm s}+\left(-2.0\,\dfrac{\mathrm m}{\mathrm s^2}\right)t\right]\,\vec\imath+\left(4.0\,\dfrac{\mathrm m}{\mathrm s^2}\right)t\,\vec\jmath](https://tex.z-dn.net/?f=%5Cvec%20v%3D%5Cleft%5B12%5C%2C%5Cdfrac%7B%5Cmathrm%20m%7D%7B%5Cmathrm%20s%7D%2B%5Cleft%28-2.0%5C%2C%5Cdfrac%7B%5Cmathrm%20m%7D%7B%5Cmathrm%20s%5E2%7D%5Cright%29t%5Cright%5D%5C%2C%5Cvec%5Cimath%2B%5Cleft%284.0%5C%2C%5Cdfrac%7B%5Cmathrm%20m%7D%7B%5Cmathrm%20s%5E2%7D%5Cright%29t%5C%2C%5Cvec%5Cjmath)
Then we integrate this to find the position vector at time
:

![\vec r=\left[\displaystyle\int_0^t\left(12\,\dfrac{\mathrm m}{\mathrm s}+\left(-2.0\,\dfrac{\mathrm m}{\mathrm s^2}\right)t\right)\,\mathrm d\tau\right]\,\vec\imath+\left[\displaystyle\int_0^t\left(4.0\,\dfrac{\mathrm m}{\mathrm s^2}\right)t\,\mathrm d\tau\right]\,\vec\jmath](https://tex.z-dn.net/?f=%5Cvec%20r%3D%5Cleft%5B%5Cdisplaystyle%5Cint_0%5Et%5Cleft%2812%5C%2C%5Cdfrac%7B%5Cmathrm%20m%7D%7B%5Cmathrm%20s%7D%2B%5Cleft%28-2.0%5C%2C%5Cdfrac%7B%5Cmathrm%20m%7D%7B%5Cmathrm%20s%5E2%7D%5Cright%29t%5Cright%29%5C%2C%5Cmathrm%20d%5Ctau%5Cright%5D%5C%2C%5Cvec%5Cimath%2B%5Cleft%5B%5Cdisplaystyle%5Cint_0%5Et%5Cleft%284.0%5C%2C%5Cdfrac%7B%5Cmathrm%20m%7D%7B%5Cmathrm%20s%5E2%7D%5Cright%29t%5C%2C%5Cmathrm%20d%5Ctau%5Cright%5D%5C%2C%5Cvec%5Cjmath)
![\vec r=\left[\left(12\,\dfrac{\mathrm m}{\mathrm s}\right)t+\left(-1.0\,\dfrac{\mathrm m}{\mathrm s^2}\right)t^2\right]\,\vec\imath+\left(2.0\,\dfrac{\mathrm m}{\mathrm s^2}\right)t^2\,\vec\jmath](https://tex.z-dn.net/?f=%5Cvec%20r%3D%5Cleft%5B%5Cleft%2812%5C%2C%5Cdfrac%7B%5Cmathrm%20m%7D%7B%5Cmathrm%20s%7D%5Cright%29t%2B%5Cleft%28-1.0%5C%2C%5Cdfrac%7B%5Cmathrm%20m%7D%7B%5Cmathrm%20s%5E2%7D%5Cright%29t%5E2%5Cright%5D%5C%2C%5Cvec%5Cimath%2B%5Cleft%282.0%5C%2C%5Cdfrac%7B%5Cmathrm%20m%7D%7B%5Cmathrm%20s%5E2%7D%5Cright%29t%5E2%5C%2C%5Cvec%5Cjmath)
Solve for the time when the
coordinate is 18 m:

At this point, the
coordinate is

so the answer is C.