Answer:
a)
, b)
, c) 
Explanation:
a) The tank can be modelled by the Principle of Mass Conservation:

The mass flow rate exiting the tank is:



b) An expression for the specific enthalpy at outlet is derived from the First Law of Thermodynamics:


Properties of water are obtained from tables:



The specific enthalpy at outlet is:


c) After a quick interpolation from data availables on water tables, the final temperature is:

Answer:
Option D
A mineral’s color reflects the wavelengths of light that are absorbed by the mineral.
Explanation:
Color is one of the physical properties of minerals. Many minerals have a wide range of colors but there are some minerals with one consistent color and such minerals are referred as monochromatic minerals for example azurite. Normally, the streak color tends to be less variable than the color of the whole mineral and impurities or minor chemical components in a mineral react and often control the display color of resultant mineral. Option D is incorrect since mineral's color don't reflect wavelengths of light absorbed by such minerals.
Answer:
5.833
Explanation:
Coefficient of Perfomance (COP) is the ratio of refrigeration effect to power input.
where RE is refrigeration effect and P is power input
Here, the power input is given as 30 kW
We also know that 1 ton cooling is equivalent to 3.5 kW hence for 50 tons, RE=50*3.5=175 kW
Now the 
Answer: hello some parts of your question is missing attached below is the missing information
The radiator of a car is a type of heat exchanger. Hot fluid coming from the car engine, called the coolant, flows through aluminum radiator tubes of thickness d that release heat to the outside air by conduction. The average temperature gradient between the coolant and the outside air is about 130 K/mm . The term ΔT/d is called the temperature gradient which is the temperature difference ΔT between coolant inside and the air outside per unit thickness of tube
answer : Total surface area = 3/2 * area of old radiator
Explanation:
we will use this relation
K = 
change in T = ΔT
therefore New Area ( A ) = 3/2 * area of old radiator
Given that the thermal conductivity is the same in the new and old radiators
Answer:
True
Explanation:
For point in xz plane the stress tensor is given by![\left[\begin{array}{ccc}Dx_{} &txz\\tzx&Dz\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7DDx_%7B%7D%20%26txz%5C%5Ctzx%26Dz%5C%5C%5Cend%7Barray%7D%5Cright%5D)
where Dx is the direct stress along x ; Dz is direct stress along z ; tzx and txz are the shear stress components
We know that the stress tensor matrix is symmetrical which means that tzx = txz ( obtained by moment equlibrium )
thus we require only 1 independent component of shear stress to define the whole stress tensor at a point in 2D plane