Answer / explanation:
How does concentration affect boiling point of a solvent?
The amount by which the boiling point is raised is directly dependent on the concentration of the solute.
The higher the concentration of a solute, the more it is said to be difficult for the solvent molecules to escape into the gas phase.
However, when a non volatile amount of substance is dissolved in a given solvent, the boiling point of the given solvent increases.
The higher the concentration, the more higher the boiling point of a solvent.
It requires a higher temperature for enough solvent molecules to escape , this the boiling point is raised elevatedly
Answer:
D.
Double replacement, CaO + Cl2O
Explanation:
Answer:
4.48 grams is the mass of potassium hydroxide that the chemist must weigh out in the second step.
Explanation:
The pH of the solution = 13.00
pH + pOH = 14
pOH = 14 - pH = 14 - 13.00 = 1.00
![pOH=-\log[OH^-]](https://tex.z-dn.net/?f=pOH%3D-%5Clog%5BOH%5E-%5D)
![1.00=-\log[OH^-]](https://tex.z-dn.net/?f=1.00%3D-%5Clog%5BOH%5E-%5D)
![[OH^-]=10^{-1.00} M=0.100 M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D10%5E%7B-1.00%7D%20M%3D0.100%20M)

![[KOH]=[OH^-]=[K^+]=0.100 M](https://tex.z-dn.net/?f=%5BKOH%5D%3D%5BOH%5E-%5D%3D%5BK%5E%2B%5D%3D0.100%20M)
Molariy of the KOH = 0.100 M
Volume of the KOH solution = 800 mL= 0.800 L
1 mL = 0.001 L
Moles of KOH = n


n = 0.0800 mol
Mass of 0.0800 moles of KOH :
0.0800 mol × 56 g/mol = 4.48 g
4.48 grams is the mass of potassium hydroxide that the chemist must weigh out in the second step.
Answer:
The molar mass of a substance is defined as the mass in grams of 1 mole of that substance. One mole of isotopically pure carbon-12 has a mass of 12 g. ... That is, the molar mass of a substance is the mass (in grams per mole) of 6.022 × 1023 atoms, molecules, or formula units of that substance.
Explanation: