Answer: For ideal machine efficiency = 1. Hence M.A = V. R. The V. R of an ideal machine and the practical machine is a constant or is the same for both
Answer:
Explanation:
The mass of the car doesn't matter because On a flat curve the mass of the car does not affect the speed at which it can stay on the curve. You would need the mass if you were solving the the centripetal force acting on the car, but not the acceleration.
and filling in
and we need 2 significant digits in our answer. That means that
a = 1.5 m/sec²
Answer:
Explanation:I don't say you have to mark my ans as brainliest but if you think it has really helped you plz don't forget to thank me ...
Answer:
あなたのポイントを無駄にして申し訳ありませんが、あなたの質問がその言語を日本語にすることがわかりません
Complete Question
A truck going 15 km/h has a head-on collision with a small car going 30 km/h. Which statement best describes the situation?
A. the truck has the greater change of momentum because it has the greater mass
B. the car has the greater change of momentum because it has the greater speed
C. neither the car nor the truck changes its momentum in the collision because momentum is conserved
D. they both have the same change in magnitude of momentum because momentum is conserved
E. none of the above is necessarily true
Answer:
D. They both have the same change in magnitude of momentum because momentum is conserved
Explanation:
In order to get a good understanding of the solution above we define some
concetps
Momentum
This is defines quantified motion and can be mathematically represented as
Momentum = Mass of the body × Velocity of the body
According to the Law of conservation of momentum states that when two particles collide together in a system that is being isolated that their total momentum before and after their collision is equal this means that the momentum lost by the truck would be the same as the momentum gained by the small car