Answer:
VAB = 20km/hr
Explanation:
<u>Given the following data;</u>
Velocity of car A, VA = 60km/hr
Velocity of car B, VB = 80km/hr
To find the relative velocity of B w.r.t A, VAB;
Since the two cars are moving in the same direction, we have;
VAB = VB - VA
Substituting into the equation, we have;
VAB = 80 - 60
<em>VAB = 20km/hr</em>
Therefore, the relative velocity of car B with respect to car A is 20 kilometers per hour.
Answer:

Explanation:
The acceleration of the block can be found by the kinematics equations:

Since the plane is frictionless, the only force acting on the block along the motion of the block is its weight.

Answer:
F = 479.21 N
Explanation:
given,
initial velocity = 0 m/s
final velocity = 16.7 m/s
time taken = 20.7 s
combined mass of the boat and trailer = 594 kg
tension in the hitch = ?
using equation of motion
v = u + a t
16.7 = 0 + a × 20.7
a = 0.807 m/s²
Force = mass × acceleration
F = 594 × 0.807
F = 479.21 N
Hence, the tension in the hitch that connects the trailer to the car is F = 479.21 N
Momentum = mass x velocity
12 = 4 x v | ÷ both sides by 4
12 ÷ 4 =v
v= 3 m/s