Complete Question
Planet D has a semi-major axis = 60 AU and an orbital period of 18.164 days. A piece of rocky debris in space has a semi major axis of 45.0 AU. What is its orbital period?
Answer:
The value is
Explanation:
From the question we are told that
The semi - major axis of the rocky debris 
The semi - major axis of Planet D is 
The orbital period of planet D is 
Generally from Kepler third law

Here T is the orbital period while a is the semi major axis
So

=>
=> ![T_R = 18.164 * [\frac{ 45}{60} ]^{\frac{3}{2} }](https://tex.z-dn.net/?f=T_R%20%20%3D%2018.164%20%20%2A%20%20%5B%5Cfrac%7B%2045%7D%7B60%7D%20%5D%5E%7B%5Cfrac%7B3%7D%7B2%7D%20%7D)
=>
Answer:
sound is how an animal or human perceives a sound wave
Answer:
The linear charge density is 5.19 X 10⁻⁶ C/m
Explanation:
The potential difference between two cylinders, is given as
V = (λ/2πε)ln(b/a)
where;
λ is the line charge density on the power line.
b is the distance between the power line = 1 m
a is the radius of the wire = 1.5 cm = 0.015 m
ε is the permittivity of free space = 8.9 X 10⁻¹² C
V*2πε = λ* ln(b/a)
3900 *(2π*8.9 x10⁻¹²)= λ *ln(1/0.015)
2.1812 X 10⁻⁷ = 4.1997* λ
λ = 5.19 X 10⁻⁶ C/m
Therefore, the linear charge density is 5.19 X 10⁻⁶ C/m
Answer:
Exposure time limitation, shielding and distance.
Explanation:
- Limitation of exposure time, since the dose received is directly proportional to the exposure time, so that, at a shorter time, lower dose. For this reason, planning is suggested, to reduce time.
-
Use of shields. This allows a reduction in the dose received by the technician when filtered by the barrier (screen). There are two types of shields or screens, the primary barriers (attenuate the radiation of the primary beam) and the secondary barriers (avoid diffuse radiation).
-
Distance to the radioactive source. The dose received is inversely proportional to the square of the distance to the radioactive source. Therefore, if the distance is doubled, the dose received will decrease by a quarter. Reason for this, it is advisable to use devices or remote controls whenever possible.
Answer: Compared to displacement and velocity, acceleration is like the angry, fire-breathing dragon of motion variables. It can be violent; some people are scared of it; and if it's big, it forces you to take notice. That feeling you get when you're sitting in a plane during take-off, or slamming on the brakes in a car, or turning a corner at a high speed in a go kart are all situations where you are accelerating.