Answer:
<h3>1.01 s</h3>
Explanation:
Using the equation of motion S = ut+1/2gt² to solve the problem where;
u is the initial velocity of the chocolate = 0m/s
t is the time taken
g is the acceleration due to gravity = 9.81m/s²
S is the height of fall = 5.0m
Substituting the given parameter into the formula to get the time t we have;
5 = 0(t)+1/2(9.81)t²
5 = 4.905t²
t² = 5/4.905
t² = 1.019
t = √1.019
t = 1.009 secs
<em>Hence it will take 1.01 secs for me to catch the chocolate bar</em>
KE=1/2 m v^2
KE= .5 x 2kg x 15m/s to the 2nd power
KE=225 km/s
To solve this problem we will apply the kinematic equations of linear motion and centripetal motion. For this purpose we will be guided by the definitions of centripetal acceleration to relate it to the tangential velocity. With these equations we will also relate the linear velocity for which we will find the points determined by the statement. Our values are given as


PART A )


Calculate the velocity of the motorcycle when the net acceleration of the motorcycle is 




Now calculate the angular velocity of the motorcycle



Calculate the angular acceleration of the motorcycle



Calculate the time needed by the motorcycle to reach an acceleration of




PART B) Calculate the velocity of the motorcycle when the net acceleration of the motorcycle is 




PART C)
Calculate the radial acceleration of the motorcycle when the velocity of the motorcycle is 



Calculate the net acceleration of the motorcycle when the velocity of the motorcycle is 



PART D) Calculate the maximum constant speed of the motorcycle when the maximum acceleration of the motorcycle is 




Assuming that reaching a height 0 doesn’t stop the ball, and that it accelerates at 9.8 m/s^2, the ball would be traveling at 0.5 + 0.7*9.8 = 7.36 m/s downwards.