Answer:
3m/s²
Explanation:
Given parameters:
Mass of object = 3.2kg
Force to the right = 16.3N
Force to the left = 6.7N
Unknown:
Acceleration of the object = ?
Solution:
To solve this problem, we use newtons second law of motion;
Net force = mass x acceleration
Net force on object = Force to the right - Force to the left
Net force = 16.3N - 6.7N = 9.6N
So;
9.6 = 3.2 x a
a =
= 3m/s²
If a gas has an initial pressure of 24,650 pa and an initial volume of 376 ml, then the final volume would be 11,943.8144 ml if the pressure of the gas is changed to 775 torr assuming that the amount and the temperature of the gas remain constant.
It is given that the initial pressure P₁ is 24,650Pa and initial volumeV₁ is 376ml and the final pressureP₂ is 775 torr. We need to find the final volume of the gas. The final volume could be found using the following formula:
P₁V₁ = P₂V₂
By substituting the values, we get
24650 x 376 = 776 x V₂
9268400 = 776V₂
V₂ = 9268400/776
V₂ = 11,943.8144 ml
Therefore, the final volume of the gas would be 11,943.8144 ml
To know more about Partial pressure, click below:
brainly.com/question/14119417
#SPJ4
Answer:
8.7 L
Explanation:
T2(V1/T1) = V2
417.15 K(6.2 L/296.45 K) = 8.7 L
Remember to almost always change celcius to kelvin. Also, this is part of Charle's Law (temp and volume are proportional, so if temp increaces so must the volume or vice versa). Lastly, Charle's Law has the formula of V1/T1 = V2/T2. I just rearranged it to go along with your problem. Hence, the T2(V1/T1) = V2
C.Pennsylvania Titusville is in the state of Pennsylvania
Answer:
Just here for the points sorry
Explanation:
Minecraft I will not be able to make the weekend of this trip until Sunday evening and I will be away for the rest of the of the week weekend and I will will be back from London tomorrow for lunchtime a week or so if to for for if to go for the it a the the it a couple of rest in the morning the other week night if and time as I we are have the first one in the evening morning so I'll we have an appointment early for in a the class morning and for and then