5.5 s
Explanation:
The time it takes for the ball to reach its maximum height can be calculated using

since
at the top of its trajectory. Plugging in the numbers,

Answer:
the buoyant force on the chamber is F = 7000460 N
Explanation:
the buoyant force on the chamber is equal to the weight of the displaced volume of sea water due to the presence of the chamber.
Since the chamber is completely covered by water, it displaces a volume equal to its spherical volume
mass of water displaced = density of seawater * volume displaced
m= d * V , V = 4/3π* Rext³
the buoyant force is the weight of this volume of seawater
F = m * g = d * 4/3π* Rext³ * g
replacing values
F = 1025 kg/m³ * 4/3π * (5.5m)³ * 9.8m/s² = 7000460 N
Note:
when occupied the tension force on the cable is
T = F buoyant - F weight of chamber = 7000460 N - 87600 kg*9.8 m/s² = 6141980 N
Answer:
When all the electrons are removed from an atom, it becomes something as a positively charged particles also known as alpha particles.
<u>Explanation:
</u>
The bare nucleus which is positively charged help in scattering experiments as it has high penetrating powers. <em>An atom is made up of electrons, protons and neutrons. We need huge energy to separate the electrons from their parent atom, still making it separated brings you a particle with a positive charge and only mass having high penetrating power.
</em>
Answer:Explained below.
Explanation:
Uranus rings is made up of jet black, coal-like particles in small bands, making them difficult to perceive from Earth.This indicates that they are probably composed of a mixture of the ice and a dark material. The nature of material is dismal, but it might be some organic compounds greatly darkened by the charged particle irradiation from the Uranian magnetosphere. Rings were discovered by using a infrared telescope throughout the occultation of a star as Uranus passed in front of it. The light from the star dimmed many times before it was obstructed by the disk of Uranus and subsequently, showing the presence of various distinct rings.