Volume doesn't depend on what the substance is, only on how much of it there is.
A) 4.7 cm
The formula for the angular spread of the nth-maximum from the central bright fringe for a diffraction from two slits is

where
n is the order of the maximum
is the wavelength
is the distance between the slits
In this problem,
n = 5


So we find

And given the distance of the screen from the slits,

The distance of the 5th bright fringe from the central bright fringe will be given by

B) 8.1 cm
The formula to find the nth-minimum (dark fringe) in a diffraction pattern from double slit is a bit differente from the previous one:

To find the angle corresponding to the 8th dark fringe, we substitute n=8:

And the distance of the 8th dark fringe from the central bright fringe will be given by

First example: book, m= 0.75 kg, h=1.5 m, g= 9.8 m/s², it has only potential energy Ep,
Ep=m*g*h=0.75*9.8*1.5=11.025 J
Second example: brick, m=2.5 kg, v=10 m/s, h=4 m, it has potential energy Ep and kinetic energy Ek,
E=Ep+Ek=m*g*h + (1/2)*m*v²=98 J + 125 J= 223 J
Third example: ball, m=0.25 kg, v= 10 m/s, it has only kinetic energy Ek
Ek=(1/2)*m*v²=12.5 J.
Fourth example: stone, m=0.7 kg, h=7 m, it has only potential energy Ep,
Ep=m*g*h=0.7*9.8*7=48.02 J
The order of examples starting with the lowest energy:
1. book, 2. ball, 3. stone, 4. brick
Answer: 1.6Hz
foe[vqefmvkeqmvkevkefmvqelkfveklveqv