The time taken for the isotope to decay is 46 million years.
We'll begin by calculating the number of half-lives that has elapsed. This can be obtained as follow:
- Original amount (N₀) = 50.25 g
- Amount remaining (N) = 16.75
- Number of half-lives (n) =?
2ⁿ = N₀ / N
2ⁿ = N₀ / N
2ⁿ = 50.25 / 16.75
2ⁿ = 3
Take the log of both side
Log 2ⁿ = 3
nLog 2 = Log 3
Divide both side by log 2
n = Log 3 / Log 2
n = 2
Finally, we shall determine the time.
- Half-life (t½) = 23 million years
- Number of half-lives (n) = 2
t = n × t½
t = 2 × 23
t = 46 million years
Learn more about half-life: brainly.com/question/25927447
The units for molarity is moles of solute per liter of solution which means if you multiply the molarity of a solution by its volume you get how many moles of solute are in the solution. (0.75Mx0.5L=0.375mol NaCl)
Then you can multiply the moles of sodium chloride (0.375 mol) by its molar mass (58.45 g/mol) to get 21.92g of sodium chloride. That means there is 21.92 grams of sodium chloride in 500mL of 0.75M solution. I hope this helps. Let me know if anything is unclear.
The answer to this item is TRUE. This can be explained through the Graham's law. This law states that the rate at which gases diffuse is inversely proportional to the square root of their densities which is also related to their molecular masses.
Answer:
2
b= they are grouped differently, but all the atoms are still there.
The mass of the product is <em>98.78 g.</em>
The word equation is
aluminum + chlorine → product
20.00 g + 98.78 g → <em>x</em> g
If each reactant is completely consumed, the <em>Law of conservation of Mass </em>tells us the mass of the product must be 98.78 g.