There are several various of expressing concentration. For instance, mass percent, volume percent, Molarity, Normality, Molality, etc.
In present case, weight of solute and solvent are given, so it will be convenient to express concentration in terms of mass percent.
Given: weight of solute (Ca2+) = 8500 g
weight of solvent (water) = 490 g.
Therefore, mass of solution = 8500 + 490 = 8990 g
Now, mass percent =

=

= 94.55 %
Answer: Concentration of calcium ions is in this solution is 94.55 % (w/W)
Sugar increases the viscosity of water
hope that helps
Lets assume x volume of NaOH and x volume of HCl are added together.
NaOH ---> Na⁺ + OH⁻
NaOH is a strong base therefore it completely ionizes and releases OH⁻ ions into the medium
HCl ---> H⁺ + Cl⁻
HCl is a strong base and completely ionizes and releases H⁺ ions in to the medium. number of NaOH moles in 1 L - 0.1 mol
Therefore in x L - 0.1 /1 * x = 0.1x moles of NaOH present
Similarly in HCl x L contains - 0.1x moles of HCl
H⁺ + OH⁻ ---> H₂O
Due to complete ionisation, 0.1x moles of H⁺ ions and 0.1x moles of OH⁻ ions react to form 0.1x moles of H₂O. Therefore all H⁺ and OH⁻are completely used up and yield water molecules.
Then at this point the H⁺ and OH⁻ ions in the medium come from the weak dissociation of water. This is equivalent to 1 x 10⁻⁷M
pH = -log [H⁺]
pH = -log [10⁻⁷]
pH = 7
pH is therefore equals to 7 which means the solution is neutral
The most eletronegative elements are to the right of the periodic table. The electronegativities increase as you move right.
Fluorine and Chlorine are the highest.
Fluorine is 4.0
Chlorine is 3.0
Fluorine is the answer.