Answer:
Work done, W = 5534.53 J
Explanation:
It is given that,
Force acting on the piano, F = 6157 N
It is pushed up a distance of 2.41 m friction less plank.
Let W is the work done in sliding the piano up the plank at a slow constant rate. It is given by :
Since, (in vertical direction)
W = 5534.53 J
So, the work done in sliding the piano up the plank is 5534.53 J. Hence, this is the required solution.
Answer:
Upper disk rotates at a constant angular velocity. The velocity at any height from stationery disk, say at x metres
where v is tangential velocity at radius r from the centre of disk
The radial component of velocity is given as
The z component of velocity is also given as
W=0
Total velocity,
We Know, K.E. = 1/2 × m × v²
From the expression, we can conclude that Kinetic energy is directly proportional to mass. So, as mass will increase, Kinetic energy will also increase.
In short, Your Correct answer would be Option B
Hope this helps!
Answer:
0.0133A
Explanation:
Since we have two sections, for the Inductor region there would be a current . In the case of resistance 2, it will cross a current
Defined this we proceed to obtain our equations,
For ,
For ,
The current in the entire battery is equivalent to,
Our values are,
Replacing in the current for t= 0.4m/s
Answer:
- Water gained: 10
- Iron lost: -10
Explanation:
Given: Hot iron bar is placed 100ml 22C water, the water temperature rises to 32C
To find: How much heat the water gain, how much heat did the iron bar lost
Formula:Q = change T x C x M
Solve:
<u>How much heat water gained</u>
Initial heat = 22, then rose to 32. To find how much heat the water gained, simply subtract the current heat by the initial heat.
32 - 22 = 10
The water gained 10 amounts of heat.
<u>How much heat Iron lost</u>
Current heat = 32, then dropped to 22. To find how much heat the Iron lost, simply subtract the initial heat by the current heat.
22 - 32 = -10
The Iron lost -10 amounts of water.