Answer:
There's no passage but I can say that matter are that ''thing'' which extend through all Universe, matter is everything. It can be seen or felt as liquid, gas or solid. This changes of its state depend on the amount of energy that is involved.
So, here is used categorical thinking because is a abstract concept that is hard to understand sometimes. It's abstract when we say that matter is all, not just what we see, but even what we don't see like ''Dark Matter'', which is the majority in the Universe.
Wish I can help, but I don't take chemistry. :(
fly sry
The answer is D.
The atomic number stands for the number of protons in each element. The number of protons is what is unique to each element. The number of neutrons varies; this is what isotopes are. The number of protons being the atomic number explains why the atomic number is an identifying characteristic of each element.
2.2311 moles of gas are there in a 50. 0 l container at 22. 0 °c and 825 torrs.
<h3>What is an ideal gas?</h3>
An Ideal gas is a hypothetical gas whose molecules occupy negligible space and have no interactions, and which consequently obeys the gas laws exactly.
Assuming the gas is ideal, we can solve this problem by using the following equation:
PV = nRT
Where:
P = 825 torr ⇒ 825 / 760 = 1.08 atm
V = 50 L
n = ?
R = 0.082 atm·L·mol⁻¹·K⁻¹
T = 22 °C ⇒ 22 + 273.16 = 295.16 K
We input the data:
1.08 atm x 50 L = n x 0.082 atm·L·mol⁻¹·K⁻¹ x 295.16 K
And solve for n:
24.20312
n = 2.2311 mol
Hence, 2.2311 moles of gas are there in a 50. 0 L container at 22. 0 °c and 825 torrs.
Learn more about ideal gas here:
brainly.com/question/23580857
#SPJ4
<h3>Answer:</h3>
0.8133 mol
<h3>Solution:</h3>
Data Given:
Moles = n = ??
Temperature = T = 25 °C + 273.15 = 298.15 K
Pressure = P = 96.8 kPa = 0.955 atm
Volume = V = 20.0 L
Formula Used:
Let's assume that the Argon gas is acting as an Ideal gas, then according to Ideal Gas Equation,
P V = n R T
where; R = Universal Gas Constant = 0.082057 atm.L.mol⁻¹.K⁻¹
Solving Equation for n,
n = P V / R T
Putting Values,
n = (0.955 atm × 20.0 L) ÷ (0.082057 atm.L.mol⁻¹.K⁻¹ × 298.15 K)
n = 0.8133 mol