Answer: 20 kgm/s
Explanation:
Given that M1 = M2 = 10kg
V1 = 5 m/s , V2 = 3 m/s
Since momentum is a vector quantity, the direction of the two object will be taken into consideration.
The magnitude of their combined
momentum before the crash will be:
M1V1 - M2V2
Substitute all the parameters into the formula
10 × 5 - 10 × 3
50 - 30
20 kgm/s
Therefore, the magnitude of their combined momentum before the crash will be 20 kgm/s
let the distance of pillar is "r" from one end of the slab
So here net torque must be balance with respect to pillar to be in balanced state
So here we will have

here we know that
mg = 19600 N
Mg = 400,000 N
L = 20 m
from above equation we have



so pillar is at distance 10.098 m from one end of the slab
Kinetic Energy = (1/2) (mass) (speed)
First runner: KE = (1/2) (45kg) (49 m/s) = 1,102.5 Joules
Second runner: KE = (1/2) (93kg) (9 m/s) = 418.5 Joules
The <em>first runner </em><em>has 163</em>% more kinetic energy than the second runner has.
Answer:
Because if they dont research first they will be unprepared
Explanation:
Answer:
If the combination of all the forces acting on an object sums upto be zero, then the net force is known as <u>balanced force.</u>
If the combination of all the forces acting on an object is non-zero, then the net force is said to be <u>unbalanced force. </u>The unbalanced force causes the object change the state of rest or motion.