Answer:
All of the above
Explanation:
The magnitude of the magnetic force on a current-carrying wire held in a magnetic is given by the equation 
Where B = Strength of the magnetic field
I = The current carried by the wire
l = length of the wire in the magnetic field
θ = Angle between the wire and the magnetic field
Based on the relationship written above, the magnitude of the magnetic force on the current - carrying wire in the magnetic field depends on the strength of the magnetic field (B), length of the wire(l), current in the wire (I).
All the options are correct.
Answer:
model 3
Explanation:
Boron with atomic number 5 will have 3 valence electrons
Answer:
3.72 kJ
Explanation:
QH = 6.45 kJ
TH = 520 K
Tc = 300 K
Qc = ?
By use of Carnot's theorem
Qc / QH = Tc / TH
Qc / 6.45 = 300 / 520
Qc = 3.72 kJ
The magnitude of the acceleration of the ball while coming to rest is 477.43 m/s²
The direction of the acceleration of the ball is downwards
The given parameters
initial velocity of the ball, u = 0
height above the ground, h = 2.2 m
time of motion of the ball, t = 96 ms = 0.096 s
The magnitude of the acceleration of the ball while coming to rest is calculated as;
let the downwards direction of the acceleration be positive

The direction of the acceleration of the ball is downwards
Learn more here: brainly.com/question/15407740