Answer:
ΔU = - 310.6 J (negative sign indicates decrease in internal energy)
W = 810.6 J
Explanation:
a.
Using first law of thermodynamics:
Q = ΔU + W
where,
Q = Heat Absorbed = 500 J
ΔU = Change in Internal Energy of Gas = ?
W = Work Done = PΔV =
P = Pressure = 2 atm = 202650 Pa
ΔV = Change in Volume = 10 L - 6 L = 4 L = 0.004 m³
Therefore,
Q = ΔU + PΔV
500 J = ΔU + (202650 Pa)(0.004 m³)
ΔU = 500 J - 810.6 J
<u>ΔU = - 310.6 J (negative sign indicates decrease in internal energy)</u>
<u></u>
b.
The work done can be simply calculated as:
W = PΔV
W = (202650 Pa)(0.004 m³)
<u>W = 810.6 J</u>
Answer:
Right hand thumb rule : It is a rule used to find the magnetic field direction around current carrying wire .
Explanation:
It states that : "If you grasp conductor in your right hand such that thumb points in upward direction ,then the direction in which our finger curls gives the direction of magnetic field or magnetic lines of forces" .
This rule proves that :Current can give rise to magnetism .
Around every current carrying conductor there exist a magnetic field which can be easily felt .
According to this rule : When a current flows in upward direction ,the finger curls in anticlockwise direction and when direction of current reverses ,then the direction of field also reverses .
The answer to the question is b because acid is a substance that tastes sour, reacts with metal and turns litmus paper blue
Answer:
1. The magnetic field encircles the wire in a counterclockwise direction
Explanation:
When we have a current carrying wire perpendicular to the screen in which the current flows out of the screen then by the Maxwell's right-hand thumb rule we place the thumb of our right hand in the direction of the current and curl the remaining fingers around the wire, these curled fingers denote the direction of the magnetic field which is in the counter-clock wise direction.
Ever current carrying conductor produces a magnetic field around it.
Answer:
22.2 W
Explanation:
First of all, we calculate the work done by moving the wagon, using the formula:

where
F = 20 N is the magnitude of the force
d = 1000 m is the displacement of the wagon
is the angle between the direction of the force and of the displacement (assuming the force is applied in the direction of motion)
Substituting, we find

Now we can find the power generated, which is equal to the ratio between the work done and the time taken:

where
W = 20,000 J
t = 15 min = 900 s
Substituting,

And the same value in Joules/second (remember that 1 Watt = 1 Joule/second)