[Co(CN)₆]³⁻ → Yellow
[Co(NH₃)₆]³⁺ → Orange
[CoF₆]³⁻ → Blue
Explanation:
- All the given compounds have octahedral geometry but the ligand in each are different with the same metal ion.
- Ligands strength order: CN⁻ > NH₃ > F⁻
- The ligand CN will act as a strong field ligand so that the splitting is maximum when compared to NH₃ and F⁻
- If the splitting is more, the energy required for transition is more, and the wavelength is inversely proportional to energy.
- So CN complex will absorb at lower wavelength (yellow color)
<span>To solve this we need to balance the equations first.
So Hg + S --> HgS is balanced
One mole of Hg requires one mole of S to form one mole of HgS.
Number of moles of Sulphur = mass/ molar mass = 157/32 = 4.906
So 4.90 moles of S reacts with 4.90 moles of Hg.
Hence there are 4.90 moles of 4.90 of Hg.
Mass = number of moles * molar mass of Hg
Mass = 4.906 * 200.59 = 982.891g</span>
Answer:
Tetrahedral molecules are normally spy hybridized.
Explanation:
Answer:
See explanation
Explanation:
The reaction that we are considering here is quite a knotty reaction. It is difficult to decide if the mechanism is actually E1 or E2 since both are equally probable based on the mass of scientific evidence regarding this reaction. However, we can easily assume that the methylenecyclohexane was formed by an E1 mechanism.
Looking at the products, one could convincingly assert that the reaction leading to the formation of the two main products proceeds via an E1 mechanism with the formation of a carbocation intermediate as has been shown in mechanism attached to this answer. Possible rearrangement of the carbocation yields the 3-methylcyclohexene product.