Boyle's law is modeled by the equation p1v1=p2v2.
Answer:
a) -35.6°C
b) 237.4 K
Explanation:
To convert temperature from degree celsius to degree fahrenheit, use the formula below:

a) Therefore to convert -32°F to celsius, substitute it into the celsius

b) To covert to the Kelvin scale, use the formula below
Answer:
2.5 * 10^-3
Explanation:
<u>solution:</u>
The simplest solution is obtained if we assume that this is a two-dimensional steady flow, since in that case there are no dependencies upon the z coordinate or time t. Also, we will assume that there are no additional arbitrary purely x dependent functions f (x) in the velocity component v. The continuity equation for a two-dimensional in compressible flow states:
<em>δu/δx+δv/δy=0</em>
so that:
<em>δv/δy= -δu/δx</em>
Now, since u = Uy/δ, where δ = cx^1/2, we have that:
<em>u=U*y/cx^1/2</em>
and we obtain:
<em>δv/δy=U*y/2cx^3/2</em>
The last equation can be integrated to obtain (while also using the condition of simplest solution - no z or t dependence, and no additional arbitrary functions of x):
v=∫δv/δy(dy)=U*y/4cx^1/2
=y/x*(U*y/4cx^1/2)
=u*y/4x
which is exactly what we needed to demonstrate.
Also, using u = U*y/δ in the last equation we can obtain:
v/U=u*y/4*U*x
=y^2/4*δ*x
which obviously attains its maximum value for the which is y = δ (boundary-layer edge). So, finally:
(v/U)_max=δ^2/4δx
=δ/4x
=2.5 * 10^-3
Answer:
Explanation:
Average speed = Total distance / Total time.
100 km/hr
r = 100 km / hr
t = 6 hours
d = 6 * 100 = 600 km
120 km / hr
r = 120 km / hr
t = 5 hour
d = 120 * 5
d = 600 km
Total distance = 600 + 600 = 1200 km
Total time = 5 hour + 6 hours = 11 hours.
Average speed = 1200 km / 11 hours = 109.1