The atomic mass or relative isotopic mass refers to the mass of a single particle, and therefore is tied to a certain specific isotope of an element. The dimensionless standard atomic weight instead refers to the AVERAGE of atomic mass values of a typical naturally-occurring mixture of isotopes for a sample of an element.
You can count it by yourself using formula
m = ({first isotopic distribution%}× {first atomic.mass})+ ({second isotopic distribution%}× {second atomic.mass}) / {100}
Answer:
0.186M
Explanation:
First, we need to obtain the moles of nitric acid that are given for each solution. Then, we need to divide these moles in total volume (120mL + 20mL = 140mL = 0.140L) to obtain molarity:
<em>Moles Nitric acid:</em>
0.0200L * (0.100mol / L) = 0.00200 moles
0.120L * (0.200mol / L)= 0.02400 moles
Total moles: 0.02400moles + 0.00200moles = 0.026 moles of nitric acid
Molarity: 0.026 moles / 0.140L
<h3>0.186M</h3>
Weathering because Weathering<span> is the process where </span>rock<span> is dissolved, worn away or </span>broken down into smaller<span> and </span>smaller<span> pieces. There are </span>mechanical<span>, chemical and organic </span>weathering<span>processes. Organic </span>weathering<span> happens when plants </span>break<span> up </span>rocks<span> with their growing roots or plant acids help dissolve </span>rock<span>.</span>
This problem requires our calculation to undergo the dimensional analysis approach. In this approach, you disregard the actual quantity and focus on the units of measurement. This helps us know the units of our final answer.
First, let's ignore 16. Let's focus on converting the units kPa-mm³/s to mJ/s. The unit kPa stands for kiloPascals which is 1000 times greater than 1 Pa. The unit mJ, on the other hand, stands for millijoules, which is 1000 times lesser than Joules. The relationship between the two is that, Joules = Pa × m³. But since we want our final answer to be mJ, that would be equal to Pa×mm³. Since the original unit already contains mm³, all we have to do is convert kPa to Pa.
16 kPa-mm³/s * (1000 Pa/1 kPa) = 16,000 Pa-mm³/s
Since Pa-mm³ is equal to mJ, the final conversion yields to 16,000 Pa-mm³/s.